
CHANGE: The Use of Change Identifiers to Update
Footprints of Dot Patterns in Real Time

Maximillian Dupenois and Antony Galton

College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK
{m.p.dupenois, a.p.galton}@ex.ac.uk

Abstract. hello

1 Introduction

It is possible to represent many real-world phenomena as point objects in a cartesian
space. These ‘dot patterns’ occur in many GIS areas of interest, ranging from plotting
the locations of buildings within cities to the the tracking of weather patterns.

Often it is desirable to be able to approximate the region containing the dots, this
‘footprint’ can be used to reduce the memory space taken up by the pattern or to be
interpreted in such a way to increase the known information about the pattern.

There is a large body of work detailing the many processes that can be used to create
footprints from dot patterns taken from a broad set of different contexts: geographical
information theory [1, 10]; pattern recognition [13, 6]; computer vision [11]; and com-
putational geometry [8] to note just a few. A more detailed examination of these algo-
rithms and others can be found in [7]. These papers all work from the assumption that
the patterns are static, however, in reality many of the patterns are intrinsically dynamic.
Any flock or crowd will change in location and or membership over time [15]. Previous
attempts at tracking moving point aggregrates have tended to be centered around object
tracking within videos [5, 2]. Object tracking, however, is attempting to track a fixed
shape amongst moving background as opposed to tracking a possibly changing shape
with no background noise. Other work is in the same vein as Huang et al. [12] which
concernins tracking herds, this is less interested in the footprint of the pattern and fo-
cuses on the herd as an abstract looking at on four major possible evolvements: expand,
join, shrink and leave.

This paper examines the problem of tracking the footprint across a dynamically
changing dot pattern. There are some cases in which a real-time update may be re-
quired, for example tracking the spread of a forest fire using a dispersed network of
sensors. Most footprint algorithms run at O(n log n) time, where n is the cardinality
of the pattern, and as a result running the algorithm for each update could lead to an
increasingly out of step representation.

A possible answer is to incrementally update the footprint. Doing this in such a
way as to be sure that the footprint at any given step is identical to that which would
be achieved by recomputing. This would be similar to the certificate based system pro-
posed in [3]. They, however, are only looking at updates to the convex hull which has

strictly defined mathematical terms. The more general idea of the footprint, which con-
vex hull comes under,does not have such a strict definition and as such does not readily
lend itself to this sort of processing.

Instead we make use of the vagueness implicitly within the footprint concept and
propose that the footprint may not need to change every timestep. If the footprint was
considered appropriate for one instant, it is unlikely that the very next instant will see it
rendered as a poor approximation of the region occupied by the pattern. By examining
the dot pattern as it relates to the footprint we can judge when the pattern has changed
sufficiently (above some predetermined threshold) and recompute the footprint then.
There will be a trade-off between the frequency of updates and the accuracy of the
footprint, this is examined later in the paper.

Below is directly from ECAI, may need to alter it
Our approach is to use a suite of easily computable change identifiers, each with its
own threshold. Recomputation of the footprint is triggered when some aggregate value
computed from the values returned by the change identifiers exceeds a given threshold.
In the simplest form this aggregate value could be a count of how many of the change
identifiers individually exceed their thresholds, amounting in effect to a vote amongst
the change identifiers. Alternatively, the change identifiers could be ranked in order of
importance and a weighted combination of their values compared with some threshold.
We investigate the effect of using different sets of change identifiers, and different ways
of combining the results returned by them.

2 Dot Patterns

Before examining the process for creating change identifiers in any detail we must first
be able to describe the dot patterns with more information than simply listing their
coordinates. Without an accurate way of describing their properties there is no reasoned
way in which to talk about their change.

When examining the patterns there are four immediate observations we can make.
These are ‘high-level’ descriptors in that they can be used to describe a pattern both
mathematically and qualitatively. For example the position of a pattern has an actual
value and can be used to describe the pattern to a human.

– Position Where in the plane is the pattern situated?
– Extent How much of the plane does the pattern fill?
– Cardinality How many dots are in the pattern?
– Density How does the cardinality fill the extent?

There are two approaches to measuring each of these descriptors depending on how
the pattern is viewed. The pattern can be seen as no more than the set of coordinate
points; this leads to a set of methods for each descrtiptor using cartesian mathematics.
We’ll call methods based on this approach base methods. Alternatively a ‘surrogate’
footprint can be given to the pattern and simple shape measures can be used to attain
values for the descriptors; called surrogate methods. The following subsections detail
some of the methods for these measurements concluding with the two that we feel are
most appropriate as base and surrogate methods for that descriptor

2.1 Position

The postion is one of the most immediately obvious measures for which noting change
is important. However, as the pattern is a distributed set, is not a uniquely defined prop-
erty. Some of the ways in which it can be measured are:

– Base
• The mean average position of the dots (the centroid).
• The median average position of the dots.

– Surrogate
• The centre point of the isothetic1 minimum bounding box2.
• The centre point of the minimum bounding circle.

Looking first at the base methods. The mean is commonly used as it implicitly takes into
account the distribution of the set. However the median has the benefit of disregarding
outliers; dots that as so far from the majority of the set that they would drag the centroid
towards them. In terms of requirements the median needs an ordered listing of the dots
and the ordering used will change the result; ordering by x then y can give a different
median to ordering by y then x. The mean does not have this ambiguity nor the extra
complexity from sorting the set. The mean is also an intuitive measure as evidenced by
how often it is used.

For the surrogate methods the bounding box is simple to compute but is rotation
dependant; if the box is not isothetic it could have a different center. The minimum
bounding circle is rotation independent but computationally complex. For the purposes
of the change identifiers the complexity must be kept low, as such the bounding box
seems the most appropriate choice.

Base: The mean average position.
Surrogate: The center of the bounding box.

2.2 Extent

Measuring the extent is a measurement of the size of the pattern3; a value that is likely
to change over any dynamic pattern. Possible methods of measurement are:

– Base
• The standard deviation.
• The variance.
• The diameter.

– Surrogate
• The area of a the bounding box.
• The diagonal of the bounding box.
• The area of the minimum bounding circle.
• The diameter of the minimum bounding circle.

1 Aligned to the xy-axis
2 Hereafter any reference to the bounding box is the isothetic minimum bounding box
3 We do not use the term size as it is as easily taken to mean cardinality as it is extent

For the surrogate methods we can ignore the minimum bounding circle for the complex-
ity reasons given in the discussion of the position descriptor. The difference between
the area and the diameter as measures is computationally negligible. However, the area
more accurately fits the description of extent as it represents an area filled.

The standard deviation4 and the variance are measures of the same effect; variance
is the standard deviation squared. The variance is computationally less expensive but
has a squared unit. In most situations the standard deviation is preferred as it gives a
result in the same unit as the original data. However we are only interested in measuring
the difference between different values and as long as the unit doesn’t change we do not
need it to be to the same power as the data. Further to this by using variance both the
surrogate and the base methods return a squared unit, making comparison somewhat
fairer. The diameter is perhaps the most intuitive extent measure from the base meth-
ods, however it is computationally expensive. The most efficient methods requiring the
computation of the convex hull of the pattern first; making the complexity O(n log n).
As such the variance is the most appropriate base measure.

Base: The variance.
Surrogate: The area of the bounding box.

2.3 Cardinality

Changing membership is clearly indicative that the footprint may need to change. Within
this paper we do not make use of it as a change identifier but this is as the test dot pat-
terns have a fixed cardinality. However it is not a useless descriptor and we should
examine its methods.

From a base level there’s only one way it can really be measured: by actually count-
ing the number of dots. As a surrogate method it is bit more complex. Footprints can
often be made up of seperate un-connected components (Swinging Arm [10] and α-
shapes [8]) if the dot pattern has areas of different density. A surrogate method for
cardinality could involve counting the number of components that make up the surro-
gate footprint. While this would be an interesting descriptor and quite a useful change
descriptor no simple methods for doing so are immediately apparent; so it is unlikely
that a simple surrogate method exists.

Base: The number of dots.
Surrogate: Potentially the number of components if a suitable method for computa-

tion can be found.

2.4 Density

The density is the amount of dots per unit area of the pattern. As a descriptor it is simply
the cardinality divided by the extent. The question is does measuring the density provide
any new information considering that it is a combination of two existing descriptors?

4 positive square root of the mean of the squared deviations from mean; in this case the square
root of the mean of the squared distances of each dot from the centroid

As a descriptor it is one of the most immediately obvious ways of describing a pattern
and because of its intuitive nature we don’t feel we can ignore it without first seeing if
it provides different results beyond a combination of both extent and cardinality.

As mentioned above the cardinality in the presented experiments does not change so
density works as a measure of extent. If it gives significantly different results to extent
we can state that the approach in which it measures change is different enough to allow
it to be a valid descriptor.

As the surrogate method for cardinality is unlikely to exist in a computationally sim-
ple fashion we use the base method of a cardinality divided by the area of the bounding
box.

The density may vary across the set with some areas being sparse and others being
very densely populated. In mixed density cases a further descriptor may be to estimate
the number of groupings of dots. As for the surrogat method for cardinality. This can
be done in a few ways, for example k-nearest neighbour algorithms or kernel density
functions. Unfortunately the complexities for these sorts of calculations can be quite
high and the time spent would have to be weighed against the potential gain.

Base: The number of dots divided by the variance.
Surrogate: The number of dots divided by the area of the bounding box.

3 Change Identifiers

While it is not difficult to think up possible measurements to be used within change
identifiers for there to be a strong argument to make use of them their creation needs to
approached in an analytical manner. First the requirements must made clear:

– Req. 1 A change identifier must complete in less time than it takes to compute the
footprint with the current algorithm. It is probably less complex than the footprint
algorithm but not necessarily so.

– Req. 2 A change identifier must return a single value indicating how much change
has occurred from the previous change causing dot pattern to the current.

Second the types of change that a pattern can undergo must be identified. For the
purpose of this paper we will use the four ‘high-level’ descriptors given in §2 and mea-
sure them using the methods given.

Third the value that is returned must be discussed; change of the dot pattern can not
be measured by just the change in the measured descriptor. For the change identifier
to be useful it has to be able to represent proportional change. For example, with a
change identifier that measures change in extent via a surrogate, a large dot pattern can
change by the same area value as a smaller dot pattern (Figure 1) and have less of a
proportional change. The smaller bounding box doubles in area compared to the larger
box which has a quarter of its original size added to it. If, instead of measuring just
the change value, the measurement difference is first divided by the measurement from
the previous update causing pattern we have a value that shows the difference in the
proportional amount of change that the two patterns in have undergone.

With these concepts clear a formal description of a change identifier can be made:

(a) Initial position (b) Increased in area

Fig. 1. Area Comparison

Formal Description

A change identifier is a method for returning a value representing the
change in a descriptor of a dot pattern that is proportional to the value of the
descriptor at the last footprint update. It takes less time to run than the footprint
algorithm for which it is being used.

Having formally described the concept behind change identifiers we can define a
notation for them that eliminates possible abiguity:

DPt: Dot pattern at time step t. If t is the current time step this is reffered to as the
current dot pattern

changex(DP1,DP2): Change identifier value for descriptor x on dot patterns DP1

and DP2

descx(dp): Value of descriptor x on dot pattern DP
u: Time at which the footprint was last updated

changex(DPt,DPu) =
|descx(DPt)− descx(DPu)|

descx(DPu)

We should be able to create an identifier for each of the dot pattern descriptors;
both the base and surrogate methods. The following subsections do this by providing
the notation for each descriptor. The name given is to each identifier is in small caps
(NAME) and is used as a short-hand symbol to reference that identifer.

3.1 Position:

Note that position is made proportional in a different fashion to the others. The other de-
scriptors return a measurable value while position returns a coordinate. It is not possible
to divide by a coordinate so instead the change in position is divided by the appropriate
extent (variance for the base and area for the surrogate). The extent is chosen as the
change in position should be proportional to the space taken up. For example a move-
ment of 6 units is proportionally greater for a pattern that has a bounding box area of 6
units2 than it is to one with a bounding box area of 60 units2.

Base:

Name: MEAN
Key:

mean(DP): Mean average location of all dots in dot pattern DP.
vari(DP): Variance of the dots in dot pattern DP.
p: A dot from a dot pattern.
|DPt|: Number of dots in pattern DPt (cardinality).
pb: Descriptor for base position.

Notation:

mean(DPt) =

|DPt|∑
i=0

pi

|DPt|

vari(DPt) =

|DPt|∑
i=0

(mean(DPt)− pi)2

|DPt|
descpb(DPt) = mean(DPt)

changepb(DPt,DPu) =
|descpb(DPt)− descpb(DPu)|

vari(DPu)

Surrogate:

Name: MBBCENTER
Key:

mbb(DP): Minimum bounding box of dot pattern DP.
center(r): Center of region r.
||r||: Area of region r.
ps: Descriptor for surrogate position.

Notation:

descps(DPt) = center(mbb(DPt))

changeps(DPt,DPu) =
|descps(DPt)− descps(DPu)|

||mbb(DPu)||

3.2 Extent:

Base:

Name: VARIANCE
Key:

eb: Descriptor for base extent.
Notation:

desceb(DPt) = vari((DPt))

changeeb(DPt,DPu) =
|desceb(DPt)− desceb(DPu)|

desceb(DPu)

Surrogate:

Name: MBBAREA

Key:

es: Descriptor for surrogate extent.

Notation:

desces(DPt) = ||mbb(DPu)||

changees(DPt,DPu) =
|desces(DPt)− desces(DPu)|

desces(DPu)

3.3 Cardinality:

Base:

Name: CARDINALITY

Key:

cb: Descriptor for base cardinality.

Notation:

desccb(DPt) = |DPt|

changecb(DPt,DPu) =
|desccb(DPt)− desccb(DPu)|

desccb(DPu)

Surrogate: Not Applicable.

3.4 Density:

Base:

Name: DENSITYBYVARIANCE

Key:

db: Descriptor for base density.

Notation:

descdb(DPt) =
|DPt|

vari((DPt))

changedb(DPt,DPu) =
|descdb(DPt)− descdb(DPu)|

descdb(DPu)

Surrogate:

Name: DENSITY
Key:

ds: Descriptor for surrogate density.
Notation:

descds(DPt) =
|DPt|

||mbb(DPu)||

changeds(DPt,DPu) =
|descds(DPt)− descds(DPu)|

descds(DPu)

This by no means an exhaustive list as there are many other change measures that
can be used, for example, the symmetric area difference between the bounding box
of the current pattern and the bounding box of the last change causing dot pattern.
However identifiers that can catch change in the given descriptors should suffice to
show that identifiers can be created to cover the major types of change.

4 Using Change Identifiers

The change identifiers are interesting in of themselves as descriptions of change but
need a well defined framework in which to operate. The basic process we implement
is shown in Algorithm 4, which works as follows. The incoming data consists of a se-
quence of dot patterns (which might come from, e.g., observations relayed by sensor
arrays). An algorithm for generating footprints from dot patterns is assumed given (we
shall refer to this as the footprint algorithm), and at the beginning of the sequence a
footprint foot(DP0) is generated for dot pattern DP0 and saved as the stored foot-
print SFP0. The dot pattern DP0 from which it is generated is stored as the stored dot
pattern (SDP0). Earlier the stored pattern is referred to as DPu; the altered nomencla-
ture is to allow the identify which was the last update causing pattern at any time step
(SDPi).

At subsequent time steps, the change identifiers are used to determine whether a
new footprint should be computed; this is done by evaluating the extent to which the
current dot pattern DPi differs from the previously stored dot pattern SDPi−1. If this
value, eval(DPi,SDPi−1,SFPi−1), exceeds some pre-set threshold, then a new foot-
print foot(DPi) is generated as the new stored footprint SFPi, and the current dot
pattern is used as the new stored dot pattern DPi. Otherwise, the stored dot pattern and
footprint are retained from the previous time step. For any dot pattern DPi, the footprint
foot(DPi) that would be computed from it (whether or not this computation actually
takes place) will be referred to (admittedly somewhat tendentiously, bearing in mind
the non-uniqueness of the footprint) as the true footprint for that dot pattern.

5 Analysis

To be able to prove that change identifiers are a useable concept we need to be able to
measure the ‘quality’ of the footprint. It should be stressed that we are not commenting

Algorithm 1 Basic Process
1: i = 0
2: Input first dot pattern DP0

3: SFP0 = foot(DP0)
4: SDP0 = DP0

5: repeat
6: i = i+ 1
7: Input DPi

8: if eval(DPi, SDPi−1, SFPi−1) > threshold then
9: SDPi = DPi

10: SFPi = foot(DPi)
11: else
12: SDPi = SDPi−1

13: SFPi = SFPi−1

14: end if
15: until No more input available

on how well the footprint algorithm can create a footprint that represents the pattern;
we assume that the algorithm used was chosen for a reason. The ‘quality’ we measure
is how close the stored footprint is to the true footprint at any given step. Obviously to
minimise the difference between the stored and true footprints there would need to be
an update at each time step. However, aside from the ‘quality’ we are also attempting
to reduce the length of time taken to run each step’s computation. These two objectives
are conflicting and as such there is a trade off between them.

So that we can run experiments on the change identifiers we have created a test
framework in Java that allows us to feed in a stream of dot patterns with a fixed length.
Over the course of a run it produces large amounts of test information, including: the
true footprint at each time step; the stored footprint at each time step; the time that
would be taken to obtain the true footprint; and the time taken to produce the stored.

Looking first at the process of measuring time across the stream.

– tFP (i) is the time taken to compute the footprint from the dot pattern at step i.
– tCI(i) is the time taken to evaluate the change identifiers at step i.
– r(i) is a Boolean variable, set to 1 if the footprint is in fact recomputed at step i,

and zero otherwise.

The total computation time over a run of n dot patterns is thus

TCI = tFP (0) +

n∑
i=1

(tCI(i) + r(i)tFP (i)).

The value of TCI is minimum when the change identifier threshold is set so high that the
footprint is never recomputed after the start of the sequence (so r(i) = 0 for 1 ≤ i ≤ n):

Tmin = tFP (0) +

n∑
i=1

tCI(i).

It is maximum when the change identifier threshold is set so low that the footprint is
recomputed at every time step (so r(i) = 1 for all i):

Tmax = tFP (0) +

n∑
i=1

(tCI(i) + tFP (i)).

If change identifiers are not used at all, and the footprint recomputed at every time
step, then the total time taken is

TNCI =

n∑
i=0

tFP (i) = tFP (0) + Tmax − Tmin.

If it is assumed that always tCI(i) < tFP (i) (for if not, there would be little point
in using change identifiers) then Tmin < TNCI < Tmax, so the relative size of TCI

and TNCI — which provides a measure of the time advantage, if any, gained by using
change identifiers — depends on the threshold settings.

Instead of examining the difference between the stored and the true footprints in the
context of measuring quality, we inverse the concept and consider the difference as a
cost. This allows us to give the goal as a minimisation of both time and cost; thinking
of both objectives in the same terms should be less confusing.

To measure this cost, we need a way of quantifying the extent of this mismatch. The
difference between two footprints can be measured in various ways, e.g., using Haus-
dorff distance, or symmetric area difference (see [9, Ch. 7] for a discussion). Here we
will use only the symmetric area difference, but the principles described below would
apply equally to other measures.

The symmetric difference between two regions comprises the parts of each region
that do not overlap the other; it is given by

R1∆R2 = (R1 \R2) ∪ (R2 \R1) = (R1 ∪R2) \ (R1 ∩R2).

We use the area of this as a measure of the dissimilarity between two footprints; and
since we are only interested in comparisons, not absolute values, we normalise this
area by expressing it as a fraction of the area of the ‘true‘ footprint (FPi) 5. Thus
the aggregate mismatch between the stored footprint and the true footprint over a dot-
pattern sequence of length n is given by

mismatch =

n∑
i=0

||FPi∆SFPi||
||FPi||

,

If the footprint is recomputed every time, corresponding to total computation time
Tmax, we have SFPi = FPi for every i, so mismatch = 0. At the other extreme, the
maximum value of mismatch is obtained when the footprint is never recomputed, cor-
responding to Tmin. There is thus a trade-off between accuracy and computation time,
as indicated in Figure 2, where different choices of change identifier thresholds corre-
spond to different positions on the curve. The optimal setting for the change identifier

5 We use FPi instead of f(DPi) for clarity within the formula

threshold depends on the relative importance attached to the conflicting goals of mini-
mizing both computation time and accumulated footprint error; but in any case no time
advantage can be obtained for mismatches below the value m at which TCI = TNCI .

T
C

I
TNCI

mismatchAccumulated footprint error ()

maxT

min

0

TT
ot

al
 c

om
pu

ta
tio

n
tim

e
(

)

m

Fig. 2. Total computation time against aggregate footprint error

6 Implementation

One of the important facets of the change identifiers that we’ve not yet mentioned is the
threshold parameter they require. Without this they have no way of actually causing an
update. Choosing a suitable parameter is not as difficult as it would first seem. As the
values are all proportional choosing the threshold is equivalent to choosing the propor-
tion of change that would be unsuitable for the context. For example an application to
measure the spread of a fire by a distributed sensor network might allow for the distri-
bution to change by up to 60% but is going to have a much smaller threshold for scale.
Even so there is a certain amount of fine tuning that needs to be done for individual
contexts. To aid this the identifiers are specified by an xml document with a an element
for the threshold.

Each of the identifiers specified above have been created to service one aspect of
change. The framework we use allows us to combine the change identifiers so we can
catch varying types of change. The xml document provides this facility and also allows
us to control some extra useful parameters. We can control the order in which the iden-
tifiers are run; the individual thresholds; a multiplier for each identifier6; and a global
threshold for the change identifier set.

6 When using many identifiers one may have greater importance in the application than another

7 Results

We have run tests on streams of 500 dot patterns containing up to 500 dots each7.
We have implemented a collective motion pattern generator which can use different
methods to produce streams of dot patterns. The method that generated the patterns for
the current tests makes use of the principles of separation, cohesion and aggregation
used to define behaviours in the Boids system of [14]. The footprint algorithm used in
the tests displayed here is the χ-hull [6] but tests have also been run on the upper and
lower convex hull algorithm as given in [4].

In the experiments the symmetric area difference is given as a percentage. These
percentages are plotted against each time step Figure 4 and the area under the graph
gives a total areal percentage difference over the course of the run. This value is divided
by the number of patterns in the stream to give the percentage symmetric area difference
per time step a measure we’re calling the ‘cost’.

The ‘Redrawn’ column in Table 7 is simply the number of times the change iden-
tifiers caused an update. Unless otherwise specified the identifiers all have a threshold
of 0.1 as it is a low enough value to cause change (10%) while not being so low as to
guarantee change if the pattern changes little in the descriptor being measured.

Change Identifier Time W/ CI(ms) Time W/out CI(ms) Time Diff.(ms) Cost(%) Redrawn
MEAN 10849 196480 185631 86.879 27
MBBCENTER 1924 192333 190409 147.275 4
VARIANCE 2880 191822 188942 120.345 7
MBBAREA 2868 192453 189585 150.191 7
DENSITYBYVARIANCE 2120 192503 190383 133.294 5
DENSITY 2447 191641 189194 149.051 6
ALLBASES 15594 193558 177964 74.522 39
ALLSURROGATES 97348 191911 94563 16.963 250
ALL 98513 194738 96225 16.963 250

The cost seems high for the identifiers by themselves but that is to be expected. The
pattern, as mentioned earlier, exhibits boid-like behaviour and as such changes often
and chaotically; a single identifier can only account for the change that it measures. The
values returned by the combinations of identifiers are far more interesting. Using all
the base values (ALLBASES) gave minimal cost decrease for a large time gain against
the results of MEAN; which out performed all the other identifiers. However the best
results came from the set containing all the surrogate identifiers (ALLSURROGATES)
with a time taken of 50.73% of the time taken without and a cost of only 16.963%.
Combining the bases and surrogates together ALL wasn’t capable of improving on the
values and given that the updates are identical it appears as if the base identifiers were
overpowered by the surrogates. It may seem strange that the surrogates by themselves
only managed a total of 17 footprint updates but when combined caused 250. This is

7 Larger tests have been run with equivalent results, however the graphs do not scale well and
are unsuited for display in this paper

because the set has a global threshold of 0.1 and the values returned by each identifier
are summed. If the sum crosses the threshold then an update occurs. Also worthy of note
is that if the footprint needed updating at each time step then we would expect updating
at every other timestep to produce a cost of 50%. As the actual cost was 16.963% we
have shown that a footprint, even on a radically changing pattern, does not neccessarily
need to be updated at each step.

As all the experiments were run on the same dot pattern, on the same computer,
on the same footprint algorithm and with the same threshold values they can be fairly
compared. To do this we produce a graph of cost against time taken for each identifier
(Figure 3).

Fig. 3. Plot of identifiers on graph of cost against time taken

The dotted line represents the pareto-front of the identifiers; the identifiers which
do no worse for either objective (minimising cost and time taken) than any other but
better or equal on at least one. This concept is called dominance and is a way of com-
paring multi-objective problems. A solution is said to dominate another iff it performs
better in all objectives. If it performs worse in all then it is dominated, otherwise the
solutions are said to be mutually non-dominating. We should stress that the this graph
only represents results for the dot pattern stream the footprint algorithm used so we
can not make sweeping generalisations, but we can comment on how they compare in
this instance. The identifiers appearing on the pareto-front are MBBCENTER, DENSI-
TYBYVARIANCE, VARIANCE, and ALLSURROGATES. These represent, respectively,
position; density; extent; and a combination of all three descriptor types. The fact that
these all appear gives weight to the statement that all of the descriptor types are relevant
and that they can be combined effectively.

The graph does not have many identifiers on it, but even with the small number of
results it has a clear similarity to the expected graph for altering the threshold values
Figure 2. This makes sense given that the we can see each solution on a graph with dif-
ferent thresholds as being different change identifiers. With this in mind we can imagine
a graph where not only are there multiple identifiers but each set appearing a number of
times with varying thresholds.

This ability to compare identifiers is useful when creating new ones: if an identifier
consistently dominates all others it may be able to replace them in sets that contain it;
thereby reducing the processing time of the set for no increase in the cost.

Further to the tabular information the experiments also graph the results.
Figure 4 shows the time taken for processing at each time step. The dashed line

represents the run performed updating at each time step and the solid line represents the
run with change identifiers. Each marker (empty discs for updating each time and filled
squares for the change identifier run) is at a time step. As can be seen the processing time
when using change identifiers consistently well below the processing time when not.
For any relatively large set (200 dots upwards) and any complex footprint algorithm8

we’ve found this to be the case.
There are several abnormally large spikes for both the run with and the run with-

out. These are because of the measurement unit being small (milliseconds) anytime the
computer uses the processor for any other purpose this can make a noticeable difference
to the time taken for the experiments. These aberrations affect both with and without
equally so cancel each other out when comparing the two time values.

Figure 5 shows the percentage symmetric area difference between the stored and
true footprints at each time step. Each marker where the line touches the x-axis is rep-
resentive of an update. On many of the spikes it can be seen that the lead up to them is
more gradual than the drop. This is to be expected as the difference between the stored
and true footprint build until one of the change identifiers breaches its threshold causing
the footprint to update.

8 Conclusions and Further Work

We proposed the concept of change identifiers as a way of reducing uneccessary updates
of the footprint of a dynamically changing dot pattern. By examining the information
implicit in the static pattern we defined descriptors that would change in value con-
currently with change in the pattern. These descriptors were turned into measures of
change from one pattern to the another; the functions for obtaining these measures are
called change identifiers. A way of assessing the performance of the identifiers was con-
ceived of by measuring the footprint at any time step with the footprint that would be
produced had there been an update (stored footprint against true footprint). The change
identifiers were then run in a series of experiments to see if time could be saved while
not compromising on accuracy.

The experiments bear out the original hypothesis that large amounts of time can be
saved by not updating the footprint at each time step. We have only briefly touched on

8 As opposed to a simple one like the minimum bounding box

Fig.4.G
raph

ofTim
e

Taken
againstTim

e
Steps

for
A

L
LS

U
R

R
O

G
A

T
E

S

Fi
g.

5.
G

ra
ph

of
Sy

m
m

et
ri

c
A

re
a

D
iff

er
en

ce
ag

ai
ns

tT
im

e
St

ep
s

fo
r

M
E

A
N

what value a reasonable cost would be; we suspect that this is context specific but there
may be a way of ascertaining an average optimum trade-off by looking at the issue as an
optimisation problem. That more time saved does lead to a greater cost indicates a multi-
objective problem and we have made some forays into running evolutionary algorithm
experiments to see if we can optimise the choice of identifiers and their thresholds. This
experimentation is too early in development to be discussed in great detail for this paper
but the preliminary results seem promising.

There are many other types of identifiers that can be created, for example: sym-
metric area difference of the minimum bounding box; proportion of dots outside the
boundary of the stored footprint; and even a random identifier that at any time step has
a given percentage chance of forcing an update. We intend to perform a larger set of
tests to see if further information can be gained from these other identifiers.

With regard to types of dot pattern, [15] proposes several types of collective move-
ment. Sets of dot pattern streams that for each of these types would allow a test to be
created for the identifiers such that, depending on their performance, they could be said
to be useful in all situations, only in some specific cases, or for none. We also wish to
apply the system to some real-world examples.

As mentioned above the identifiers have been tested on a convex hull algorithm with
similar results. However there are many more non-convex algorithms that can be tested
against. For completeness the α-shape from [8] and the swinging-arm algorithm from
[10] will be implemented.

Other accuracy measures, e.g., Hausdorff distance, will also be implemented, and it
will be interesting to see how they relate to each other.

Bibliography

[1] Avi Arampatzis, Marc van Kreveld, Iris Reinacher, Christopher B. Jones, Subodh
Vaid, Paul Clough, Hideo Joho, and Mark Sanderson. Web-based delineation of
imprecise regions. In Computers, Environment and Urban Systems, volume 30,
pages 436–459. Elsevier, 2006.

[2] Shai Avidan. Ensemble tracking. In In CVPR, pages 494–501, 2005.
[3] Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mo-

bile data. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete
algorithms, SODA ’97, pages 747–756, Philadelphia, PA, USA, 1997. Society for
Industrial and Applied Mathematics. ISBN 0-89871-390-0.

[4] Mark Berg, Otfried Cheong, Marc Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, April 2008.

[5] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object
tracking. IEEE Transactions On Pattern Analysis and Machine Intelligence, 25
(5):564–577, 2003.

[6] Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient genera-
tion of simple polygons for characterizing the shape of a set of points in the plane.
In Pattern Recognition, volume 41, pages 3224–3236. Elsevier, 2008.

[7] Max Dupenois and Antony Galton. Assigning footprints to dot sets: An analytical
survey. In K. S. Hornsby, C. Claramunt, M. Denis, and G. Ligozat, editors, Spa-
tial Information Theory: Proceedings of the 9th International Conference COSIT
2009, pages 227–244, Berlin, 2009. Springer.

[8] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape
of a set of points in the plane. In Computer Vision and Image Understanding,
volume IT-29, pages 551–559. IEEE, 1983.

[9] Antony Galton. Qualitative Spatial Change. Oxford University Press, 2000.
[10] Antony Galton and Matt Duckham. What is the region occupied by a set of points?

In GIScience, 2006.
[11] Gautam Garai and B. B. Chaudhuri. A split and merge procedure for polygonal

border detection of dot pattern. In Image and Vision Computing, volume 17, pages
75–82. Elsevier, 1999.

[12] Yan Huang, Cai Chen, and Pinliang Dong. Modeling herds and their evolvements
from trajectory data. In GIScience ’08: Proceedings of the 5th international con-
ference on Geographic Information Science, pages 90–105, Berlin, Heidelberg,
2008. Springer-Verlag.

[13] Mahmoud Melkemi and Mourad Djebali. Computing the shape of a planar points
set. Pattern Recognition, 33(9):1423 – 1436, 2000.

[14] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In
SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graph-
ics and interactive techniques, pages 25–34, New York, NY, USA, 1987. ACM.

[15] Zena M. Wood and Antony P. Galton. A taxonomy of collective phenomena.
Applied Ontology, 4:267–292, 2009.

