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Abstract. While the generation of a shape, or footprint, from a set
of points has been widely investigated, there has been no systematic
overview of the field, with the result that there is no principled basis for
comparing the methods used or selecting the best method for a particular
application. In this paper we present a systematic classification of foot-
prints, algorithms used for their generation, and the types of applications
they can be used for. These classifications can be used to evaluate the
suitability of different algorithms for different applications. With each al-
gorithm is associated a vector of nine values classifying the footprints it
can produce against a standard list of criteria, and a similar vector is as-
sociated with each application type to classify the footprints it requires.
A discussion of, and a method for, the assessment of the suitability of
an algorithm for an application is presented.

1 Introduction

While the generation of a shape, or footprint, from a set of points has been widely
investigated, there has been no systematic overview of the field, with the result
that there is no principled basis for comparing the methods used or selecting the
best method for a particular application. In this paper we present a systematic
classification of the footprints, the algorithms used, and the types of applica-
tions they can be used for. Our classification of footprints bears some similarity
to the set of criteria proposed by Galton and Duckham [9] for evaluating the
footprints produced by different algorithms. However, here we provide a more
detailed analysis and propose a method for choosing an algorithm appropriate
for a given context. It should be noted that this paper makes no attempt to eval-
uate these footprints, only to classify them. Using this classification we evaluate
the suitability of algorithms for general applications, but this has no bearing on
how ‘good’ a footprint is. For a discussion on the quality of a footprint with re-
gard to perceived shape or any other cognitive criteria see [8]. The classifications
of the footprints, algorithms and applications are all linked but for the sake of
clarity are declared separately, with appropriate relations discussed later. While
we only cover two-dimensional footprints, much of the analysis should carry over
to the three-dimensional case; but it is likely that three-dimensional footprints
have additional properties not covered by the present classification.



2 Definitions

The general problem under consideration is that of assigning a region-like entity
to a collection of point-like entities in space. In this paper we call the former
a ‘footprint’ and the latter ‘dots’. Here we provide a brief justification for this
choice of terminology.

– Dots We refer to dots rather than points because when considering the
various algorithms it became apparent that, in addition to coordinates, the
point-like entities may possess attributes such as shape, area, or velocity,
any of which might be of relevance to an algorithm.

– Footprint What we are here calling footprints have variously been called
outlines, shapes, hulls, and regions. We reject ‘outline’ and ‘shape’ as being
too focussed on the boundary; while ‘region’ seems too general, with noth-
ing to indicate any special relationship to the dots. ‘Hull’ has often been
chosen to reflect the idea of a footprint as a generalisation of the convex
hull, and indeed many of the algorithms are modified forms of convex-hull
algorithms (e.g., Concave Hull [13]); however, the definition of a hull oper-
ator in computational geometry requires all the dots to lie within the hull,
which must itself be connected [12], both of which conditions may be vio-
lated by footprint algorithms.1 ‘Footprint’ is used in various fields to denote
the impression of some entity,2 and this connotation seems appropriate here.

3 Background

As mentioned in the introduction, much work has been done on the generation of
footprints, but there has been surprisingly little by way of comparative analysis.
Four types of analysis largely absent from the literature on footprints are:

– Analysis of the types of footprint.
– Analysis of the methods used in the algorithm, and how these methods limit

the footprints produced.
– Analysis of the algorithm type, e.g., whether it requires some form of pre-

processing on the data set.
– Analysis of the context that the algorithm was created for.

An early, and much-referenced, paper on the subject is by Edelsbrunner et al.
[5], who present a method for creating footprints from a point set.3 The method
produces straight-line graphs called α-shapes, obtained from a generalisation
of the convex hull. For a set S the convex hull can be considered to be the
intersection of all closed half-planes that contain all the points of S. The α-hull
1 A hull operator is also required to be idempotent; it is not clear what this could

mean in the case of an operator which generates a region from a finite set of points.
2 E.g. the memory space a piece of software uses, the actual footprint of an animal,

the carbon footprint.
3 Point set and not dot pattern as the method only uses the coordinates.



is obtained by using closed discs of radius 1/α instead of half-planes; the α-shape
is derived from this in a straightforward way. The authors do not discuss any
principled way to choose the appropriate α for the type of shape required.

Chaudhuri et al. [3] present two methods for generating a footprint, called
the external shape, from a dot pattern. Although they use the term ‘dot pattern’
they make no distinction between points and dots. For the first method, a grid of
squares of side-length s is drawn on the plane, and the union of all grid-squares
containing at least one of the dots is returned as the footprint, called the s-shape.
For the r-shape they inscribe a disc of radius r round each dot, and draw an edge
connecting any pair of dots whose discs intersect in a point not contained in any
of the other discs. These edges provide an outline which, in our terms, may be
regarded as the boundary of the footprint. As with the α-shape, no principles
are given for selecting appropriate values of r or s.

Garai and Chaudhuri [10] propose a ‘split and merge’ method for generating
footprints. This method starts from the convex hull and attempts to refine it to
a shape more closely resembling what they refer to as the underlying shape. The
method consists of three separate algorithms (four if the convex hull algorithm
is included): splitting, isolation, and merging. This is one of the few algorithms
that provides a way of aiming for a particular shape without having to re-run
the algorithm with different parameters, so long as the user is able to identify a
desired maximum area or number of sides just from a cursory examination of the
dot pattern. Again the authors say little about the quality or type of footprint
they generate.

Alani et al. [1] developed the Dynamic Spatial Approximation Method (DSAM).
This system takes in both the dot pattern of the region to be found and the dot
pattern of the area known to exist outside the region. It builds a Voronoi diagram
based on these coordinates and takes the union of all the cells which contain an
‘interior’ point as its footprint. This work pays more attention than many in the
area to the quality of footprint produced; this can be assessed in terms of how
closely the region found fits the expected region. The existence of a contextually
determined target shape differentiates this paper from others in the field.

Arampatzis et al. [2] follow on from Alani et al. [1]. However, they adapt
DSAM to use Delaunay triangulations in conjunction with a system for finding
point locations using web queries. They call this adaptation the recolouring al-
gorithm and use it to generate boundaries for imprecise regions. Much like the
DSAM this system has a target shape and, as such, this paper has more analysis
of the footprint found than much of the field.

Galton and Duckham [9] propose two methods for finding footprints. The
first method is a generalisation of the Jarvis March (‘gift-wrapping’) algorithm
for convex hulls. The idea behind the Jarvis March is simple. From an origin
point outside the dot set a radial half-line is swung in an arbitrary direction
until it meets one of the dots. This dot is made the new origin point from which
a radius is swung in the same direction as before until it meets another dot.
This is repeated until the first dot is encountered again; the sequence of dots
encountered in this way form the vertices of the convex hull. Dots are removed



from consideration if they have already been marked as being on the convex
hull or if they lie within the area enclosed by the dots encountered so far. The
‘Swinging Arm’ algorithm is similar except that it uses a line-segment of some
predetermined length instead of a half-line. The second method starts with the
Delaunay triangulation and successively removes the longest external edge, sub-
ject to constraints of maintaining connectedness and regularity, until either some
predetermined minimum length is reached, or no more edges can be removed.
The authors note that there can be no uniquely ‘optimal’ footprint when the
application context is considered to be general. The paper proposes nine criteria
which may be used for evaluating footprint algorithms with respect to different
application contexts, although little is said about any actual applications. Some
of these criteria are used by the classification developed in the present paper.

Moreira and Santos [13] present a ‘Concave Hull’ algorithm. Like the Swing-
ing Arm, Concave Hull is also derived from the Jarvis March algorithm, its dif-
ference being that it always selects the next vertex from the k nearest neighbours
of the current vertex. This is the crux of the algorithm’s effectiveness: by having
a non-contextual integer as the variable that restrains the hull algorithm, they
have a default base value from which they can run the algorithm (i.e. k = 3); if
this fails to produce a footprint that satisfies the criteria (having no intersecting
lines and containing all the points) then the algorithm is run with increasing
values of k till such a footprint is created. Like most of the other authors they
pay little attention to the quality of the footprint in relation to any application
type, though they do mention the criteria given in [9]. Like the split and merge
method [10], the Concave Hull algorithm requires some pre-processing of dots,
using the Shared Nearest Neighbour (SNN) algorithm to determine any sepa-
rable groupings in the dot pattern prior to running the algorithm. Like Garai
and Chaudhuri they do not take account of this pre-processing algorithm in
determining the computational complexity of their own.

Duckham et al. [4] provide a fuller account of the Delaunay-based method
introduced in [9], now called the χ-algorithm. This paper includes a discussion
of the footprint’s properties, and how these are directly tied to the method by
which it is created. More attention is paid to the choice of the length parameter l.
There are practical limits on l for any triangulation (if it is too large then no lines
will be removed, if it is too small too many will be removed) and consequently
l can be normalised. Duckham et al. propose using this normalised parameter
(λp) to find a starting value which should achieve what they call a characteristic
shape for many, if not all, dot patterns. While they conclude that there is no λp
that always produces a “good” characterization, the fact that they spend time
considering this is unusual within the field. Unlike Moreira and Santos [13] and
Garai and Chaudhuri [10], Duckham et al. do not discount the pre-processing
(in this case computing the Delaunay triangulation and sorting the edges) when
determining the complexity of the algorithm.

Galton [8], instead of proposing an algorithm, searches for objective criteria
for evaluating the acceptability of any proposed footprint in relation to the
‘perceived’ shape of a dot pattern. The paper notes that in most of the published



work, “while lip-service is generally paid to the fact that there is no objective
definition of such a ‘perceived shape’, little is said about how to verify this, or
indeed, about exactly what it means”. Restricting attention to footprints in the
form of polygonal hulls, simple polygons having vertices selected from the dot
pattern, all the other dots being within the interior, the paper presents evidence
that while a dot pattern may have several equally acceptable perceived shapes,
they all represent optimal or near-optimal compromises between the conflicting
goals of simultaneously minimising both the area and the perimeter of the hull.

4 Classifications

4.1 Footprints

Before embarking on the classification, we make some preliminary observations
of a general nature.

1. While a footprint is, considered in itself, a region with a shape, what makes
it a footprint is the relationship it bears to the dot pattern from which it is
derived. For this reason, it must be emphasised that our classification does
not attempt to be a general classification of shapes; it only considers those
aspects of shape which are relevant to the role of being a footprint.

2. Our classification criteria can be divided into intrinsic criteria, which con-
cern properties of the footprint in itself, without reference to the dots, and
relational criteria which concern the relationship between the footprint and
the dots.

Intrinsic footprint criteria

[C] Connected The footprint consists of a single connected component.
Figure 1 shows examples of connected and disconnected footprints for the same
dot pattern. Some algorithms will always generate a single connected compo-
nent, implicitly assuming that any clustering has been done beforehand, with
the algorithm being applied to individual clusters (e.g., Concave Hull [13], χ-
shape [4]); others can yield footprints with multiple components (e.g., Swinging
Arm [9]). The desirability or otherwise of multiple components is application-
dependent, e.g., if only connected footprints are appropriate, use an algorithm
guaranteed to produce such components.

[R] Regular The footprint is topologically regular.
Assuming the footprint is topologically closed, this criterion amounts to whether
or not the footprint contains boundary elements that do not bound the foot-
print’s interior, such as the linear ‘spike’ in Figure 2(b) or isolated linear com-
ponent in Figure 2(c).

[P] Polygonal The boundary of the footprint is made up of only straight lines.
For a polygonal footprint the boundary is made up entirely of straight line-
segments as opposed to curves. (Figure 3).



(a) Connected (b) Multiple Compo-
nents

Fig. 1. Connectedness

(a) Regular (b) Irregular (c) Irregular

Fig. 2. Regular

(a) Polygonal (b) Curvilinear

Fig. 3. Polygonal

[JC] Jordan Components Each component of the footprint has a Jordan
boundary.
A Jordan boundary is a boundary which is a Jordan curve, i.e., homeomorphic
to a circle. Such a boundary does not meet itself, so it is possible to traverse
the entire boundary passing through each of its points only once. (Figure 4(a)).
In Figure 4(b) the component with a non-Jordan boundary is represented as a
‘bow tie’ shape; of course this is not the only way the Jordan property can fail.4

4 In relation to the ‘bow-tie’ configuration, if the footprint is formed by tracing out its
boundary, then the constriction point may be either a self-intersection, where the
boundary actually crosses itself, or a pinch point, where the boundary touches itself
without crossing. An intersection or pinch-point may or may not occur on one of the
dots; examination of the algorithms suggests that a self-intersection is more likely
to occur away from a dot, whereas the opposite is true for a pinch point.



(a) All Jordan Compo-
nents

(b) Not all Jordan
Components

Fig. 4. Jordan Boundary

(a) Simply
Connected

(b) With
Cavity

Fig. 5. Simply Connected

[SCC] Simply Connected Components Each component of the footprint is
simply connected.
A component that is not simply connected contains a ‘hole’ (Figure 5(b)). In
two dimensions this means that the boundary is disconnected, with one of the
boundary components facing the ‘outside’, and each other component bounding
an internal cavity.5

Relational footprint criteria

[CED] Curvature Extrema At Dots All curvature extrema of the footprint
boundary coincide with dots.
Very often a footprint is constructed by tracing its boundary through some or
(more rarely) all the dots of the dot pattern. In such cases it is typical for the
dots to mark curvature extrema of the outline; this is the normal situation when
the outline is polygonal, with the dots at its vertices (Figure 6(a)), and is always
found in the case of the convex hull.

Note that this criterion is independent of whether all, some, or none of the
dots occur on the boundary (which is given by criteria [ADB] and [NDB] in-
troduced next), as shown by Figure 6, where each value for one criterion can
co-occur with each value of the other. However, [CED] ∧ [NDB] (all curvature
extrema are dots and all dots are off the boundary) can only be true if the foot-

5 In three dimensions there are more varieties of connectivity to consider, e.g., the
distinction between an internal cavity and a perforation. We shall not discuss these
further here.



print is circular, in which case there are no curvature extrema, so [CED] is true
by default.

ADB ¬ ADB ∧ ¬ NDB NDB

CED
(a) (b) (c)

¬CED
(d) (e) (f)

Fig. 6. Curvature Extrema and Dots On/Off Boundary

[ADB] All Dots on Boundary All of the dots lie on the boundary of the
footprint.
In general we would not expect footprints to satisfy this criterion, but in some
applications the dots are specifically intended to represent boundary points, and
in such cases this criterion is appropriate. As mentioned above [ADB] is linked
to, but distinct from, whether or not the curvature extrema coincide with dots
(Figure 6).

[NDB] No Dots on Boundary None of the dots lie on the boundary of the
footprint.
Criteria [ADB] and [NDB] cannot be simultaneously satisfied, and they are not
independent. As with [ADB] it is linked to, but distinct from, whether or not
the curvature extrema coincide with dots (Figure 6). Some algorithms (e.g.,
the Voronoi-based method of [1]) create footprints by amalgamating ‘areas of
influence’ surrounding the dots. In such cases the dots typically all lie in the
interior of the footprint, and hence off the boundary.

[FC] Full Coverage All of the dots are included in the closure of the footprint.
It is possible that a footprint algorithm may be able to distinguish certain dots
from the pattern as ‘noise’, and as such it may wish to exclude them from the
footprint. We call such dots outliers (Figure 7).

The criteria listed here can be combined together to give an overall classification
of any particular footprint. For compactness, we shall represent such a classi-
fication using the abbreviations introduced above. For a footprint F we might
present this in the form of a list such as



(a) No outliers (b) Some Out-
liers

Fig. 7. Full Coverage

F{C, R, P, JC, SCC, CED, ADB, ¬NDB, FC}

but when comparing footprints it is convenient to present the data in tabular
form as in Table 1, which presents the classifications for the footprints illustrated
in Figure 8. In Table 1 the + indicates a true value and − a false.

Footprint Examples C R P JC SCC CED ADB NDB FC

Example 1 [Figure 8(a)] + + + + + + − − +

Example 2 [Figure 8(b)] + − + − − + − − −
Example 3 [Figure 8(c)] − + − + + + − + +

Example 4 [Figure 8(d)] − + + + + − − − +

Table 1. Classification of Footprint Examples

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 8. Footprint Examples

Note that Example 1 is the convex hull of its dot pattern, and the only
properties for which it is not classified as + are [ADB] (all dots on the boundary)
and [NDB] (no dots on the boundary). In general, the convex hull of any dot
pattern will satisfy the criteria C, P, SCC, ¬NDB, and FC. Unless the dots are
collinear, it will also satisfy R and JC. It may or may not satisfy ADB.



4.2 Algorithms

There are three types of algorithm classification criteria, relating to the nature
of input expected, the process and the output. For the purposes of this paper
we are most interested in the output produced, but we shall first briefly describe
the other two types.

With regard to the input there are three key questions to ask: Does the
algorithm require pre-processing? Does it require any data on the dots besides
the coordinates (e.g. velocity or area)? Does it require an input parameter (e.g.,
line-length in Swinging Arm [9], α in α-shapes [5])?

The process has two criteria. First, does the algorithm build the footprint in-
crementally from the dot pattern or does it create the footprint by decrementally
removing elements from some initial shape (usually the convex hull)? Second,
does the algorithm optimise the footprint with respect to some pre-defined crite-
ria designed to produce some form of best-fit shape (e.g., based on some general
idea of what the final shape should look like). This optimisation can be per-
formed in two ways. The first method is to produce a footprint, analyse it and
then, if the footprint fails to match some pre-determined criteria, to iterate the
algorithm with some internal value changed, as in Concave Hull [13]. The al-
ternative is to examine the footprint to see if performing the next step of the
algorithm invalidates some criteria, e.g., the χ-Hull algorithm [4] checks whether
removing a line will make the footprint no longer a simple polygon. The two
types may be called remedial and preventive optimisation respectively.

Output
This makes use of the footprint classification but with the added complication
that the terms become modalised. There are many possible footprints for any dot
set and infinitely many possible dot sets. We cannot predict all the footprints
an algorithm can produce, but sometimes we can state whether a particular
algorithm can ever produce a footprint with certain properties. Some properties
are necessary (e.g., the output from Swinging Arm [9] is always polygonal), some
are unconstrained (e.g., an α-shape [5] may have a cavity, but need not) and some
are impossible (e.g., an s-shape [3] cannot have all its curvature extrema on dots).
We can denote these cases using positive, null and negative respectively. Below,
Table 2 shows the value system chosen to represent these.

Value Description

1 All of the footprints produced by the algorithm satisfy the criterion
0 Some, but not all, of the footprints produced by the algorithm satisfy the criterion

−1 None of the footprints produced by the algorithm satisfy the criterion

Table 2. Possible Modal Values



Table 3 gives a few examples of algorithms as classified by the footprints they
produce. As in the footprint examples we begin with the convex hull, using the
Jarvis March algorithm. Any convex hull algorithm will be classified in the same
way as they all produce the same footprint for a given dot pattern. Note that
when assessing criteria R and JC, we discount cases where the input dots are all
collinear, for which most algorithms will produce a straight line segment as the
footprint. If in all other cases the footprint satisfies R or JC then, we shall record
this using 1− here (to mean ‘all footprints for non-collinear inputs’) rather than
0. Later, when using these values, 1− will be treated as 1.

Algorithm Examples C R P JC SCC CED ADB NDB FC

Jarvis March [11] 1 1− 1 1− 1 1 0 −1 1

Swinging Arm Algorithm [9] 0 1− 1 1− 1 1 0 −1 1

α-shape [5] 0 1− 1 1− 0 1 0 −1 0

Concave Hull [13] 1 1− 1 1− 1 1 0 −1 1

DSAM [1] 1 1 1 0 0 −1 −1 1 1

Table 3. Algorithm Examples

In Table 3 it can be seen that the outputs from the Concave Hull algorithm
and the Jarvis March algorithm are classified in the same way. However, while
they produce the same footprint types by the classification, they may be very
different from the point of view of the quality evaluation criteria, as mentioned
in §1.

4.3 Application Types

Little work has been done on relating the various methods to application types.
It is understandable that there is a desire to abstract the theory away from the
application, so that a general method for finding a footprint can be created and
used in any circumstance. However, existing methods can produce very different
results with a variety of different computational complexities. As such it seems
that linking a method to, at least, a general application type would help the
understanding of the aims behind each method and when it is best used. But
before this can be done the application types have to be classified.

This is meant to be a broad description of the types of applications that these
algorithms can be used for, not an in-depth study of each actual application. The
classification is laid out with the idea that there are certain types of application
and within each type there are optional requirements for each instance.

Pattern Recognition Finding a particular shape from an image is obviously
linked to footprint generation, particularly in a digital field where the dots rep-



resent pixels. Within pattern recognition the relevance of associated data is ap-
parent, so it is likely the algorithm will need data for the dots beyond their
coordinates, e.g. colour values.

Classification In this type of application, the dot patterns do not exist in phys-
ical space, but represent positions in some abstract quality space, representing
the attributes of different entities, each of which is assigned to some known class.
The problem is to determine the region of quality space occupied by entities of
that class. An example is shown in Figure 9, where instances of two different
classes of entity (represented by the red and blue6 colours) are shown. It is
clear that there is a distinct difference between the groupings and a footprint
algorithm might be used to find these. There is a presumption that the dots
representing entities in the same class will form distinct groupings in the quality
space — if this is not the case then that quality space has been inappropriately
selected for the classification task.

Fig. 9. Application Type: Classification (synthetic data from [6])

Region approximation Applications in this category are required to generate a
geographical region on the basis of sample points within it. We distinguish three
subcategories: simplification, estimation, and precisification. This represents a
distinction in aims: the methods used in each case could well be the same.

Simplification occurs when the region itself is exactly known, but, perhaps for
reasons of storage economy, the generation of a simpler version of its outline
from a set of sample points within it is desired. An example might be that

6 Darker and lighter if viewed in black and white



of approximating a county boundary from a collection of points known to lie
inside it, as exemplified by the methods described in [2].

Estimation occurs when the region has a determinate boundary but this is
incompletely known, e.g., if we try to locate the border of a city from the
buildings within it. There is a definite boundary to the city but by using the
footprint given by dot set (in which the dots represent a large number of the
buildings) we might be able to approximate it.

Precisification Here there is no definite region to start with, for example the
border of a forest. We have certain tree locations and we can use these to
provide a sharp boundary to represent what may in reality be an indeter-
minate transition zone. The term ‘precisification’ is used in Supervaluation
Theory [7], where it denotes the replacement of a category with incompletely
determinate membership by one with fully determinate membership.

Aggregation This category is concerned with the creation of an aggregate entity
from possibly scattered components, e.g., for the purpose of map generalisation,
where what appears on a large scale map as a collection of individual buildings
may need to be represented as a single connected built-up area when the scale
is reduced. This is distinct from region approximation in that there need be no
presumption that what is being represented is a region distinct from the buildings
themselves; rather, what we want to represent is the buildings themselves, but at
a coarse level of granularity where they cannot be distinguished as individuals.

With any of these categories one might wish to track changes over time as
the entities represented by the dots appear, move, or disappear: in this case the
application type becomes dynamic rather than static. This implicitly means we
are treating our data as more than just coordinate locations as we have added a
‘history’ to each dot. The linkages between footprint types and application types
may vary according as the latter are regarded as static or dynamic. However, for
the scope of this paper we will restrict ourselves to the static form.

5 Classification Relations

As already mentioned, algorithm types are linked to the footprints they produce.
Moreover, application types may be linked to the footprints types they require
(§5.1).

5.1 Relating Application Types to Footprints

For a given application type, a particular footprint property may be required,
permitted, or forbidden. For this reason we can use the same modal type classi-
fication as we used for describing the outputs from footprint algorithms (Table
2). This will also aid in choosing which algorithms can be used for a specific
application type. The tables below give our initial thoughts concerning the foot-
print requirement of the various application types; more detailed analysis will
be required for a more definitive statement of these, as described below in §6.



Application Type C R P JC SCC CED ADB NDB FC

Pattern Rec. 0 0 0 0 0 0 0 0 1

Classification 1 1 0 1 0 −1 −1 1 1

Simplification 1 1 0 1 0 0 0 −1 0

Estimation 0 1 0 0 0 0 0 0 1

Precisification 0 1 0 0 0 −1 −1 1 0

Aggregation 1 1 0 1 0 0 0 0 1

Table 4. Application Types Related to Footprints

5.2 Application Types to Algorithms

Just as an application type can have requirements on the footprints, it may also
be constrained as to what data it can provide to an algorithm. However, this
kind of constraint may not be relevant at the level of generality with which we
are treating application types here.

There is one algorithm criterion which is of particular interest. Whether or
not the dot pattern contains only coordinate data is likely to be heavily affected
by making the data dynamic. When running whichever loop is required to allow
the algorithm to generate the footprint over the ‘frames’ that make up the data
(live or pre-set) it would be näıve not to keep track of the ‘past’ associated with
each point. Without this the main body of the algorithm needs to be re-run for
each frame, instead of using the knowledge of the current footprint and likelihood
of movement for each dot to cut down on processing time.

Algorithm Suitability By comparing the classification of an algorithm with
the application-type classification, we can endeavour to determine the suitability
of different algorithms for various applications. Earlier we introduced a value
system for our modalities. The footprint criteria were given a value of 1 if it
was necessarily true that it holds for all elements, −1 if it was necessarily true
that it does not hold for any elements and 0 if the criterion was unconstrained.
Application contexts have a vector of these values for their required footprints
and the algorithms have vectors for their possible output footprints.

With the goal of having a clear, systematic and quantitative approach we
looked at several ways of treating the results. The first method that presented
itself was to treat these vectors as points in nine dimensional space, allowing us
to find the Euclidean distance between them and thereby assess, numerically, the
suitability of the algorithm. As the maximum possible distance between any of
the values is 2 we can have a maximum total distance of

√
9 · 22 = 6. If the two

vectors are equal we have the minimum distance of 0. This allows us to present
the ‘quality’ of the algorithm, with regards to the application, on a scale of 0–1,
where 1 is best fit and 0 is worst, using the formula 1 − (x/6) where x is the
distance between the two classification vectors.



However this assumes that all the footprint criteria should be treated as of
equal weight. It may well be the case that an algorithm is shown to be close to a
best fit but that the criterion it fails is the most important for a specific context.
There is also the issue that vectors with many small single value differences
are the same distance apart as vectors with few large differences (four 1 value
differences to each 2 value). This goes some way to depicting the importance
large value differences have over small ones and as a result may be of benefit,
but the degree of increase in worth is simply a product of the way the distance
is found and therefore may be inappropriate.

Despite these concerns the ‘real’ issue with the Euclidean distance is how to
interpret the result. When the method was used on the previously mentioned
algorithms against the application vectors the results were all in the range of 0.38
to 0.76, with most of the values being very close for each application. These close
results made it difficult to determine which algorithms would perform better
than others, particularly as assigning the qualitative value of ‘good’ to a strictly
quantitative measure seemed presumptious, even pseudoscientific.

Further to the Euclidean distance we looked at using the scalar product and
the angle between the vectors, but both these methods suffered from the same
problems as the distance.

The facts that the value system indicates that all the criteria are equally
weighted and that the resultant values are so similar are clear indicators that
the three values may not be enough. One approach to correcting this would
be to relate applications to footprints using a continuous scale from −1 to 1,
allowing the values to be ranked by importance. This could also be applied to
the algorithms: on the original discrete scale an algorithm which is connected in
all but the rarest cases would still be marked as a 0, whereas it may be more
appropriate to assign a value of, for example, 0.9, indicating that the algorithm
mostly produces connected footprints. This continuous scale could also lead to
greater differences between the distances so assessing them would be easier.
However there is still the problem of judging the result in a systematic manner
and the added problem of assigning the original values, for example how do
you judge if an algorithm is ‘0.45’ on a scale of producing a regular footprint?
Even if you take it as a likelihood for how often an algorithm produces a type
of footprint then you have an issue, if an algorithm only produces an irregular
footprint when the dots are collinear there are still infinitely many dot patterns
which will cause this.

The duality in meaning of 0 is also worth noting. The value 0 can mean
two separate things for an application: (1) the algorithm is required to be able
to produce both extremes; or (2) the algorithm does not care which value is
produced. Thus if the application vector has 0 indicating ‘uncaring’ in a certain
position, this should be allowed as a good match with any of 1, 0, and −1 in
the algorithm vector, whereas a 0 indicating a requirement of both values should
only match to a 0 on the algorithm.

Seeing that there were more than a few issues with the system it seemed
sensible to go over some specific application fields and attempt to find their



appropriate vectors. In doing this we hoped that the answers to the above issues
would present themselves. However after just a few it became apparent that
even an application as specific as ‘removing outliers from a spatial distribution’
gave a vector composed almost entirely of 0’s, it often being the case that a dot
pattern can be envisioned for each possible value for a criterion. These ‘weak’
results would indicate that the dot pattern heavily influences the requirements
for the application.

Based on the influence the dots have it appears that an exact method for
assessing the suitability of the algorithm requires a change in the classification
approach. Instead of simply stating that the application always/sometimes/never
requires footprints of a given type as output, we might now additionally try to
characterise the inputs for which outputs of that type are to be produced, thereby
moving towards providing a potential specification for an algorithm satisfying
that application. A similar system could be applied to the algorithm, by spec-
ifying the types of output associated with different types of input. These two
classifications could then be compared to check for suitability. Unfortunately the
process for creating such a system is not known. It would require having a com-
plete set of dot pattern classifiers and a way of assigning values to them. Then
the system would have to be created by considering which of the dot pattern
descriptors affect which footprint classifiers and in what manner. For example;
if the minimum and maximum distances between any two points differ largely
from the average distances does this affect the likelihood that the footprint will
need to be connected? This would also need to be done for the algorithm in
terms of how the dot pattern affects the footprint the algorithm produces. It is
likely that such a process would be complicated and prone to assigning values
as arbitrarily as in the suggestion for continuous values.

After much work it became apparent that we needed to ‘tighten’ our focus.
Our goal could be achieved much more simply and straightforwardly using direct
comparison. This still leaves us with the problem of the dual meaning of 0 for
the applications, and the fact that an algorithm which will produce one type of
footprint except in special circumstances (i.e. collinearity) will strictly be given a
value of 0. As such we will re-introduce the 1− and, if necessary, add −1+ to both
algorithms and applications; these indicate that except in special circumstances,
which should be described, the algorithm produces, or the application requires, a
value of 1 or −1 respectively. We will also strictly define the 0 on an application
as requiring both, if the application has no preference for the result the value is a
∼ sign. These extended values allow for very easy comparison, users can concern
themselves only with values about which they care. They can also clearly see
which special circumstances can occur and decide if they are applicable to their
application. An example of the way this could be set out is shown in Table
5.7 Running through this we can see that the Swinging Arm algorithm [9] fails
completely on SCC and FC and only satisfies R and JC if the special cases are

7 For the sake of the example we have made the assumption that, for this applica-
tion, curvature extrema are required at dots even though this is not stated by the
application title.



likely to come up regularly in the application field. As such we can say that the
Swinging Arm algorithm would be unsuitable for this application.

C R P JC SCC CED ADB NDB FC

Algorithm: 0 1− 1 1− 1 1 0 −1 1

Application: 0 0 ∼ 0 0 1 0 −1 −1

Table 5. Assesing Swinging Arm [9] for suitability to the application of removing
outliers from a spatial distribution. Special cases on the algorithm: R and JC are −1
when dots are collinear.

6 Conclusion

Before discussing the additions this work has made to the field the shortcom-
ings must be explained. The values given on the application types are easily
debatable, and perhaps some of the values could even be changed to their polar
opposite while keeping in line with the application descriptions. However, we
chose the values while attempting to keep in mind the aim of maintaining a very
general view. Even should there be any significant disagreement with the values
the goal of this paper is unaffected, our aim being to show the possibility of de-
veloping a systematic value system that can be used to rate algorithms against
applications.

We noted in §3 that current literature has little to say about the types of
footprint generated or required. We advocate the use of a classification system
along the lines presented here, though we expect that further work will refine the
details considerably. There is also a noticeable deficiency with regard to applying
the algorithms to any applications. Even from the very general definitions given
in this paper it should be apparent that the contexts can differ hugely and
may have conflicting requirements. Given this diversity of applications, it seems
strange to present a footprint algorithm without linking it to an application
context, without which little can be said about the suitability of the footprints
generated. The disparity also means a truly general algorithm is unlikely. The
algorithms considered here were largely produced without specific applications
in mind; it is interesting to speculate how different they might have been had
they been created with particular contexts in mind.

Aside from the above mentioned shortfalls the paper presents a systematic
way of rating the appropriateness of algorithms for applications by classifying
the footprints they create. This rating uses a clear nomenclature which is easily
repeatable and therefore usable by others. In further work we plan to refine the
list of criteria, to examine the dot pattern types more closely, and to consider
how input and process criteria for the algorithms relate to application types.
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