
The Use of Change Identifiers to Update
Footprints of Dot Patterns in Real Time

Maximillian Dupenois and Antony Galton1

Abstract. This paper looks at the problems involved in maintain-
ing footprints over non-static dot patterns and how to balance effi-
ciency and accuracy. It introduces the concept of change identifiers
as a method of choosing appropriate update points.

1 Introduction

In spatial information theory one often encounters the problem of
representing groups or aggregates, which at a fine level of granular-
ity appear as pluralities with a scattered distribution but at a coarser
granularity may be treated as single coherent individuals with their
own behaviour and properties. Familiar examples from the everyday
world include forests (i.e., aggregates of trees), flocks and crowds
(aggregates of animals or people), and conurbations (aggregates of
buildings).

In recent research, attention has been paid to the problem of as-
signing a spatial location to an aggregate considered as a unit, given
as inputs the spatial locations of the individual components [3, 7].
In abstract form, the two-dimensional problem is, given a set of dots
(i.e., objects sufficiently compact to be idealised as points) in the
plane, to determine a footprint representative of the spatial distribu-
tion of the collection of dots taken as a whole. The footprint will be
a two-dimensional region, which, depending on one’s purposes, may
be required to satisfy various contraints such as polygonality, con-
nectedness, topological regularity, convexity, etc [4]. The problem
generalises to three dimensions in the obvious way, but for simplicity
the discussion in this paper will be restricted to the two-dimensional
version.

It cannot be too strongly emphasised that there does not exist a
uniquely “best” or “correct” footprint for a given dot pattern. In [6]
it was shown experimentally that footprints selected as “good” by
human subjects represent optimal trade-offs between the conflicting
goals of minimising the area and minimising the perimeter, but this
certainly does not tell the whole story. For human purposes, an im-
portant feature of a good footprint is that it “looks” right, that is, it
represents a shape that we “see” in the dot pattern itself. But for some
purposes, one might prefer to use a footprint that is very easily com-
puted (e.g., the minimal axis-aligned bounding rectangle) or which
has well-known mathematical properties (e.g., the convex hull), even
though in many cases these do not provide a close visual match to
the dot pattern.

Many different algorithms for generating footprints from dot sets
have been proposed, in contexts such as geographical information
theory [1, 7], pattern recognition [10, 3], computer vision [9], and

1 University of Exeter, England, email: m.p.dupenois@ex.ac.uk,
a.p.galton@ex.ac.uk

computational geometry [5], to cite only a few representative ex-
amples. In all these cases, however, the assumption is that the dot
patterns are static. In reality, many examples of collectives or ag-
gregates are dynamic, with either the location or the membership,
or both, varying over time [13]. Of our examples above, flocks and
crowds vary in both these respects over a short time scale; forests and
conurbations also vary, but the time-scale is typically several orders
of magnitude greater.

The problem we address in this paper is how to track the foot-
print of dynamically changing aggregates of dots. In the case of fast-
moving aggregates, an added constraint is that the tracking should
take place in real time. Footprint algorithms typically run in time
O(n logn) or worse (sometimes much worse), where n is the num-
ber of dots. Hence recomputing the footprint ab initio every time
there is a change in the dot pattern will be computationally costly,
making real-time recomputation infeasible in many cases.

One possible approach would be to look for a way to update the
footprint incrementally rather than recompute it entirely. In an ideal
world, one could do this in such a way that the footprint assigned to
the dots at any time is always identical to the footprint that would be
obtained if it were recomputed. In general, for most types of foot-
print it is unlikely that such exact tracking can be accomplished with
significantly less cost than recomputing the footprint every time.

Instead, we propose a method by which the position of the dots
in relation to the most-recently computed footprint is continuously
monitored, and the footprint is only recomputed when the mismatch
between the dot positions and the current footprint exceeds some
preassigned threshold of accuracy. Clearly there will be a trade-off
between the level at which the accuracy threshold is set and the re-
sultant frequency of recomputation, and we investigate the nature of
this trade-off with a view to optimising it.

Our approach is to use a suite of easily computable change iden-
tifiers, each with its own threshold. Recomputation of the footprint
is triggered when some aggregate value computed from the values
returned by the change identifiers exceed a given threshold. In the
simplest form this aggregate value could be a count of how many of
the change identifiers individually exceed their thresholds, amount-
ing in effect to a vote amongst the change identifiers. Alternatively,
the change identifiers could be ranked in order of importance and a
weighted combination of their values compared with some threshold.
We investigate the effect of using different sets of change identifiers,
and different ways of combining the results returned by them.

The plan for the remainder of this paper is as follows. In section
2 we discuss a range of possible change identifiers, evaluating them
in terms of their ease of computation and informativeness in rela-
tion to the task in hand. In section 3 we consider combinations of
change identifiers, and discuss the computation of aggregate values

and thresholds. In section 4, we describe the software engine we have
used to implement the ideas previously described, and in section 5
we outline the protocol for using this engine to investigate differ-
ent dynamic dot patterns, footprint algorithms, and change-identifier
sets. Section 6 presents preliminary tests which have been conducted
using the engine, using a convex hull algorithm for generating foot-
prints. Finally, in section 7 we summarise the results obtained so far
and outline our plans for future work.

2 Process
The basic process we implement is shown as Algorithm 1, which
works as follows. The incoming data consists of a sequence of dot
patterns (which might come from, e.g., observations relayed by sen-
sor arrays). The dot pattern associated with time step i is denoted
DPi, and is referred to as the current dot pattern when i is the cur-
rent time. An algorithm for generating footprints from dot patterns is
assumed given (we shall refer to this as the footprint algorithm), and
at the beginning of the sequence a footprint f(DP0) is generated for
dot pattern DP0 and saved as the stored footprint SFP0. The dot
pattern DP0 from which it is generated is stored as the stored dot
pattern (SDP0). At subsequent time steps, the change identifiers
are used to determine whether a new footprint should be computed;
this is done by evaluating the extent to which the current dot pattern
DPi differs from the previously stored dot pattern SDPi−1. If this
value, eval(DPi, SDPi−1, SFPi−1) exceeds some pre-set thresh-
old, then a new footprint, f(DPi) is generated as the new stored
footprint SFPi, and the current dot pattern is used as the new stored
dot pattern DPi. Otherwise, the stored dot pattern and footprint are
retained from the previous time step.

Algorithm 1 Main Process
1: i = 0
2: Input first dot pattern DP0

3: SFP0 = f(DP0)
4: SDP0 = DP0

5: repeat
6: i = i+ 1
7: Input DPi

8: if eval(DPi, SDPi−1, SFPi−1) > threshold then
9: SFPi = f(DPi)

10: SDPi = DPi

11: else
12: SDPi = SDPi−1

13: SFPi = SFPi−1

14: end if
15: until No more input available

3 Change Identifiers
Each change identifier returns a value representing some measure of
change. To produce this value it has access to the stored dot pattern,
the current dot pattern and the stored footprint. Most of the identi-
fiers listed below do not use the stored footprint; this enables them
to be used in conjunction with a wide range of footprint algorithms,
since they make no assumptions concerning the nature of the foot-
print (e.g., whether it must be polygonal, can have holes or multi-
ple components, etc.). To assess whether the value it returns should
force a footprint update, a threshold is associated with each change
identifier; and if change identifiers are to be combined, a method to

normalise their values is required. These ideas are discussed in the
section on change identifier sets §4. We term a change indentifier
breaking its threshold as a fail as the stored footprint has failed to
accurately represent the current dot patten.

The identifiers listed below are by no means an exhaustive list but
they do present a solid base, covering a range of possible transfor-
mation types the dot pattern could undergo, e.g., changes in position,
distribution and membership of the dot pattern.

3.1 Change in centroid scaled by the bounding box
This change value is given by the distance between the centroids of
the current dot pattern and the stored dot pattern. The value is nor-
malised by dividing it by the diagonal of the bounding box of the
stored dot pattern. If the dot pattern has n dots, the total computation
time is O(n) (If the dots are held in a suitable tree data structure,
the bounding boxes can be found in time O(logn), but this does not
reduce the overall order-of-magnitude complexity.)

3.2 Change in variance from the centroid
The difference between the variances2 of the current and stored dot
patterns. We use variance rather than standard deviation so as to avoid
the processing time involved in computing the square root. This mea-
sure can also be computed in time O(n).

3.3 Change in axis-aligned medians
This is given by the distance between the ‘medians’ of the current
and stored dot patterns, where the (axis-aligned) median of a dot pat-
tern is defined as the point whose coordinates are the medians of
the x-coordinates of the dots and the y-coordinates of the dots re-
spectively. This is analogous to the centroid but computed using the
median rather than the mean. However, unlike the centroid, it is not
rotation-invariant.

3.4 Percentage change in number of dots
This is the difference in number of dots between the current dot pat-
tern and the stored dot pattern as a percentage of the number of dots
in the stored dot pattern. This can be computed in O(n + i) time,
where i is the number of dots from the previous pattern.

3.5 Change in bounding box
This is computed as the area of the symmetric difference between the
bounding boxes of the current and stored dot patterns, expressed as
a fraction of the area of the bounding box of the stored dot pattern.
This is the sum of the areas of the bounding boxes, less twice the
area of their intersection. If the dots are held in a two-dimensional
tree data structure, this can be computed in time O(logn).

3.6 Proportion of points outside the boundary of
the stored footprint

The fraction of dots outside the current footprint. By using the ray-
casting method [12] we can find this in O(nm) time, where m is the
number of edges of the footprint. This is only sensibly applied if the
footprint algorithm does not allow outliers, i.e. dots present in the dot

2 The variance is the mean squared distance of the dots from the centroid.

2

pattern but not in the completed footprint. It should be noted that this
is the only change identifier on our list which makes use of the stored
footprint.

4 Change Identifier Sets
While the identifiers could all be run separately, it seems likely that
the best results will be achieved when a group of two or more identi-
fiers is used. To this end we use an xml file to collect them. Listing 1
shows an example of this.

1 <c h a n g e i d e n t i f i e r s e t name=” [s e t−name] ” v e r =” 1 . 0 ”>
2 <d e s c r i p t i o n>D e s c r i p t i o n o f t h e s e t< / d e s c r i p t i o n>
3 < t h r e s h o l d>50< / t h r e s h o l d>
4 <m a x F a i l s>2< / m a x Fa i l s>
5 <c o n c u r r e n t> f a l s e< / c o n c u r r e n t>
6 <c h a n g e i d e n t i f i e r>
7 < l o c a t i o n>[l o c a t i o n]< / l o c a t i o n>
8 <c l a s s n a m e>[c l a s s n a m e]< / c l a s s n a m e>
9 <p r i o r i t y>1< / p r i o r i t y>

10 < t h r e s h o l d>10< / t h r e s h o l d>
11 <m u l t i p l i e r>1< / m u l t i p l i e r>
12 <r e d r a w O n F a i l> f a l s e< / r e d r a w O n F a i l>
13 < / c h a n g e i d e n t i f i e r>
14 <c h a n g e i d e n t i f i e r>
15 < l o c a t i o n>[l o c a t i o n]< / l o c a t i o n>
16 <c l a s s n a m e>[c l a s s n a m e]< / c l a s s n a m e>
17 <p r i o r i t y>2< / p r i o r i t y>
18 < t h r e s h o l d>10< / t h r e s h o l d>
19 <m u l t i p l i e r>1< / m u l t i p l i e r>
20 <r e d r a w O n F a i l> f a l s e< / r e d r a w O n F a i l>
21 < / c h a n g e i d e n t i f i e r>
22 < / c h a n g e i d e n t i f i e r s e t>

Listing 1. Change Indentifier Set

A quick description of some of the elements will explain how we
have dealt with the parameters of the identifiers. Looking first at the
global elements there are two values that affect the updates directly:
<threshold> and <maxFails>. If the total change is over the threshold
value or if the number of change identifiers that fail is over the the
maximum allowed fails then we redraw the footprint. <concurrent>
concerns the way the identifiers run, each identifier has a priority,

if <concurrent> is false then identifiers are run in the order of de-
scending priority. The lower the number the higher the priority. If
<concurrent> is true then the change identifiers are threaded, the rea-
son this option is in place is that over small test sets the amount of
time taken to start a thread could be above the time taken to run
the footprint algorithm. Each change identifier is considered to have
failed if the change it returns is over the threshold. If <redrawOnFail
> is set to true then, regardless of the other change identifiers, we
force a footprint redraw. The last element of particular interest is the
<multiplier>. The identifiers have different scales of measurement,
adding the area change to the variance from the centroid is combin-
ing two very different units together and therefore may give undue
importance to one identifier over another. The multiplier is applied
to the change value of the identifier before it is added to the total
value to prevent this inequality from occurring.

With regard to finding appropriate multipliers, thresholds and
change identifier combinations there are too many variations to work
through and test individually. To that end future work includes run-
ning an optimisation system of some kind to find appropriate sets and
values.

5 Analysis
The purpose of using change identifiers is to enable the evolution of
a footprint to be tracked more efficiently than by recomputing the

footprint at each time step. The footprint is only recomputed when
the change identifiers indicate that the dot pattern has changed suffi-
ciently to make the mismatch with the current stored footprint unac-
ceptably great. The number of footprint recomputations, and hence
the total time taken to process a given sequence of dot patterns, will
depend on the change identifiers used, and the threshold settings. We
define variables as follows:

• tFP (i) is the time taken to compute the footprint from the dot
pattern at step i.

• tCI(i) is the time taken to evaluate the change identifiers at step i.
• r(i) is a Boolean variable, set to 1 if the footprint is in fact recom-

puted at step i, and zero otherwise.

The total computation time over a run of n dot patterns is thus

TCI = tFP (0) +

n∑
i=1

(tCI(i) + r(i)tFP (i)).

The value of T is minimum when the change identifier threshold is
set so high that the footprint is never recomputed after the start of the
sequence (so r(i) = 0 for 0 < i ≤ n):

Tmin = tFP (0) +

n∑
i=1

tCI(i).

It is maximum when the change identifier threshold is set so low that
the footprint is recomputed at every time step (so r(i) = 1 for all i):

Tmax = tFP (0) +

n∑
i=1

(tCI(i) + tFP (i)).

If change identifiers are not used at all, and the footprint recom-
puted at every time step, then the total time taken is

TNCI =

n∑
i=0

tFP (i) = tFP (0) + Tmax − Tmin.

If it is assumed that always tCI(i) < tFP (i) (for if not, there would
be little point in using change identifiers) then Tmin < TNCI <
Tmax, so the relative size of TCI and TNCI — which provides a
measure of the time advantage, if any, gained by using change iden-
tifiers — depends on the threshold settings.

This time advantage must be set against the accuracy with which
the footprint is tracked. The cost of using change identifiers comes
from the fact that, most of the time, the stored footprint differs from
the true footprint. To measure this cost, we need a way of quantifying
the extent of this mismatch. The difference between two footprints
can be measured in various ways, e.g., using Hausdorff distance, or
symmetric area difference (see [8, Ch. 7] for a discussion). Here we
will use only the symmetric area difference, but the principles de-
scribed below would apply equally to other measures.

The symmetric difference between two regions comprises the parts
of each region that do not overlap the other; it is given by

R1∆R2 = (R1 \R2) ∪ (R2 \R1) = (R1 ∪R2) \ (R1 ∩R2).

We use the area of this as a measure of the dissimilarity between two
footprints; and since we are only interested in comparisons, not ab-
solute values, we normalise this area by expressing it as a fraction of
the area of the true footprint. Thus the aggregate mismatch between

3

the stored footprint and the true footprint over a dot-pattern sequence
of length n is given by

mismatch =

n∑
i=0

||FPi∆SFPi||
||FPi||

,

where ||X|| denotes the area of region X .
If the footprint is recomputed every time, corresponding to to-

tal computation time Tmax, we have SFPi = FPi for every i,
so mismatch = 0. At the other extreme, the maximum value of
mismatch is obtained when the footprint is never recomputed, cor-
responding to Tmin. There is thus a trade-off between accuracy and
computation time, as indicated in Figure 1, where different choices
of change identifier thresholds correspond to different positions on
the curve. The optimal setting for the change identifier threshold de-
pends on the relative importance attached to the conflicting goals of
minimizing both computation time and accumulated footprint error;
but in any case no time advantage can be obtained for mismatches
below the value m at which TCI = TNCI .

T
C

I

mismatchAccumulated footprint error ()

maxT

min

0

T

TNCI

T
ot

al
 c

om
pu

ta
tio

n
tim

e
(

)

Figure 1. Total computation time against aggregate footprint error

6 Implementation
6.1 System
We have implemented a system to run test the ideas presented in this
paper. The system is split into modular parts: the engine, the change
identifiers, the application and the footprint algorithms. The appli-
cation initialises an instance of the engine, passing it the footprint
algorithm to use and the indentifier set to process, then it starts the
instance. The engine sits in a waiting state checking an internal queue
to see if it has dot patterns to process. The application passes dot pat-
terns to the engine, as in a live system it does not wait for a response
but sends them continuously. The engine processes the dot patterns
and notifies the application each time it generates a new stored foot-
print. Once the application has sent all the patterns to the engine it
sends a command to stop. If we are running this instance as a test then
the engine processes the dot patterns without the change identifiers
and records the data.

The information we record is listed below:

• Time taken to run the engine over the entire set.

• Time taken to run the footprint algorithm.
• The state of the change identifier set at each timestep:

– How long each change identifier took to run.

– Which change identifiers failed.

– The value each change identifier returned.

– What the total change was.

– If the change identifier set redrew then which change identifier
was the one that caused the set to fail.

• Time taken to run the set.
• The current dot pattern at each time step.
• The stored footprint at each time step.
• The ‘true’ footprint at each time step.

The other component of note in the system is a properties holder
linked to the dot patterns. The change identifiers often compare val-
ues from the current and last updated from dot patterns. Once this
value has been found it is inefficient to work it out again so the pat-
tern stores it in a mapping table.

6.2 Testing Methodology
As mentioned in §6.1 we also run the set again without change iden-
tifiers. By running this control we can see how much time is saved
using the change identifier sets and draw similarity comparisons, giv-
ing us quantative data to see how far out of step the stored footprint
at any time step is from the true footprint. We use the methods de-
scribed in §5 to produce two graphs: the first being the symmetric
area difference against time step and the second being the time taken
for each time step. The uses of the symmetric area difference have al-
ready been discussed, so we shall just note that the time taken graph
is important for more than the the total time of the run. If a change
identifier set takes nearly as long as the footprint to process and the
dot patten stream does not require an update often the total time for
the run with change identifiers will still be less than for without, even
though it’s total update time (tCI(i) + r(i)tFP (i)) is nearly double
the footprint time (tFP (i)). The time taken graph will show this large
increase as a tall spike.

Another method of judging footprints is the entirely qualitative
approach of whether or not human intuition calls it a good fit. We
can record the streams as ‘movies’ of the footprint evolving with the
dot pattern. These ‘movies’ can be played to a selection of people
and they can be asked to rate how well they felt the footprint kept
up with the dot pattern. Importantly the test should be set up such
that the notion of a good footprint is disentangled from how well
it can be tracked. Results from this experiment would indicate just
how important people think accuracy is. This data will allow us to
state which change identifier sets give acceptable accuracy for high
efficiency and may help us say something about what properties of
the dot pattern are most important when generating a footprint.

Also of interest will be the comparison between the quantative and
the qualitative data. Comparing the sets seen as accurate within the
study to the sets given as accurate by the quantative testing may tell
us which change identifiers are most important to human intuition.

6.3 Current Results
Current tests have been run on streams of 500 dot patterns of up to
1000 dots. In default of real data we have implemented a collective
motion pattern generator which can use different methods to produce

4

streams of dot patterns. The method that generated the patterns for
the current tests makes use of the Boid behaviours of seperation, co-
hesion and aggregation[11] to dictate the movement of the dots. The
algorithm used has been the upper and lower convex hull algorithm
as given in [2]. A separate program has been written to showcase
the two footprints for each timestep (one with change identifiers the
other without) and time details from the test (See Figure 23).

Figure 2. Screenshot of Result Display App.

Currently the only two change identifiers that full tests have been
run on are the difference in area of the bounding box (§3.5) and the
change in the number of dots (§3.4), however both of these consis-
tently show better run times for with change identifiers than without.

The results display application produces the two graphs described
in §6.2. The time taken graph (See Figure 3) has two lines: The
squares are on the line representing the run with change identifiers,
and the circles are on the line representing the run without. The black
bars represent where the graph has been cut and stitched, this is be-
cause the graph was simply too long at 500 steps to display in its en-
tirety. As would be expected, with change identifiers is consistently
below without, in fact it generally takes less than 1ms to run and
therefore is less than 1ms over the footprint algorithm time when it
updates. The time steps at which it updates can clearly be seen on
the graph U0 – Ui. Figure 3(a) is the time step difference when the
threshold of the bounding box is set at 20%, Figure 3(b) is when the
theshold is 10%. The 10% threshold updates more often and we have
a total time of 90ms for the run compared to 61ms for the 20%, both
are far below the comparison run which updates each timestep how-
ever, that being 1331ms for the 20% run and 1342ms on the 10%.

The area difference graph (See Figure 4) also clearly shows the
update times (U0 – Ui). More interesting is the information it can
tell us about the change of the dot pattern. The regularity with which
these updates occur show us the how static the dot pattern is and, if
we know the change identifier(s) used, how it changed. The cropping
makes it unclear but on Figure 4(a), towards the end the area dif-
ference levels out. This leveling out indicates that the bounding box
of the dot pattern did not change by over 20% for these time steps.
The area difference at during this static period is around 16%, if this
is within allowed footprint error then we are saving large amounts
of time across the period by not updating. If, however, 16% is con-
sidered too great a footprint difference then we need to change the

3 The screenshot is from a smaller test than the one mentioned above so that
the footprints are clearly visible on the small image

threshold values on the identifier set to update earlier. Figure 4(b)
is a run with the bounding box threshold set at 10% , as mentioned
above, this causes far more updates. Interestingly Figure 4(b) does
not level out like Figure 4(a) does, this shows that lowering the
threshold picked up change ignored by the larger. The accumulated
error (as described in §5) for Figure 4(b) and Figure 4(b) is 4545.5
and 2826 respectively, these seem like large numbers but are accu-
mulated over 500 time steps and give us an average error of 9.091
and 5.652. Whether or not this is acceptable will depend on specific
application requirements.

(a) Bounding Box Threshold at 20%

(b) Bounding Box Threshold at 10%

Figure 3. Graph of Time Taken against Time Steps

(a) Bounding Box Threshold at 20%

(b) Bounding Box Threshold at 10%

Figure 4. Graph of Footprint Area Difference against Time Steps

7 Conclusions amd Further Work
The principles behind the change identifiers appear to be sound. The
graphs show a consistent saving of 5ms per time step using only the

5

bounding box change identifier. There have not yet been enough tests
performed to say whether or not any change identifier is better than
an other, however the bounding box has shown itself to be able to
identify dot pattern changes and update accordingly.

The continuation of this work includes implementing the rest of
the change identifiers and running basic tests on them, as with the
bounding box, to see if they affect the update times with any regu-
larity. Once done, an application using the principles of optimisation
will be created to sort through the variations of change identifier sets
over a particular dot pattern stream with a particular footprint algo-
rithm. The results of this will be plotted on to a graph (as described
in §6.2) of area under the area difference graph against time taken.
This application will need to be run over several footprint algorithms
and dot pattern streams. With regard to the different types of foot-
print algorithm; the χ-hull algorithm from [3], the α-shape from [5]
and the swinging-arm algorithm from [7] will be implemented. The
majority of non-convex footprint algorithms require some external
parameter (α in the α-shape, line length in the χ-hull and arm length
in the swinging-arm), fortunately the selection of this parameter does
not greatly concern us. We are interested in how well we can track
the footprint, not how appropriate the footprint is for the dot pattern.

[13] mentions several collective movement types, having sets of
dot pattern streams that replicate these movements would lend weight
to the accuracy rating of the change identifiers. It would show that
the identifier in question was accurate over all types, accurate only
for some or for none.

Other accuracy measures will also be implemented (Hausdorff dis-
tance etc.) and it will be interesting to see how they relate to each
other. A side interest will be to see how they relate to the accuracy
ratings from the human study, it may be that one of the measures is
more implicitly used by the human mind than others.

The human study requires some research into the execution as it
is all to easy to sway results simply with inaccurate wording on the
introduction. With this in mind we will liase with the University of
Exeter psychology department in an attempt to avoid accidental bias.

REFERENCES
[1] A. Arampatzis, M. van Kreveld, I. Reinbacher, C. B. Jones, S. Vaid,

P. Clough, H. Joho, and M. Sanderson, ‘Web-based delineation of
imprecise regions’, Computers, Environment and Urban Systems, 30,
436–459, (2006).

[2] Mark Berg, Otfried Cheong, Marc Kreveld, and Mark Overmars, Com-
putational Geometry: Algorithms and Applications, Springer, 3rd edn.,
April 2008.

[3] M. Duckham, L. Kulik, M. Worboys, and A. Galton, ‘Efficient genera-
tion of simple polygons for characterizing the shape of a set of points
in the plane’, Pattern Recognition, 41(10), 3224–3236, (2008).

[4] Max Dupenois and Antony Galton, ‘Assigning footprints to dot sets:
An analytical survey’, in Spatial Information Theory: Proceedings of
the 9th International Conference COSIT 2009, eds., K. S. Hornsby,
C. Claramunt, M. Denis, and G. Ligozat, pp. 227–244, Berlin, (2009).
Springer.

[5] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, ‘On the shape of a
set of points in the plane’, IEEE Transactions on Information Theory,
IT-29(4), 551–559, (1983).

[6] A. P. Galton, ‘Pareto-optimality of cognitively preferred polygonal
hulls for dot patterns’, in Spatial Cognition VI: Learning, Reason-
ing and Talking about Space, eds., C. Freksa, N. S. Newcombe,
P. Gärdenfors, and S. Wölfl, pp. 409–425. Springer, (2008).

[7] A. P. Galton and M. Duckham, ‘What is the region occupied by a set of
points?’, in Geographic Information Science: Proceedings of the 4th In-
ternational Conference, GIScience 2006, eds., M. Raubal, H. J. Miller,
A. U. Frank, and M. F. Goodchild, pp. 81–98. Springer, (2006).

[8] Antony Galton, Qualitative Spatial Change, Oxford University Press,
2000.

[9] Gautam Garai and B. B. Chaudhuri, ‘A split and merge procedure for
polygonal border detection of dot pattern’, Image and Vision Comput-
ing, 17, 75–82, (1999).

[10] M. Melkemi and M. Djebali, ‘Computing the shape of a planar points
set’, Pattern Recognition, 33, 1423–1436, (2000).

[11] Craig W. Reynolds, ‘Flocks, herds and schools: A distributed behav-
ioral model’, in SIGGRAPH ’87: Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques, pp. 25–34,
New York, NY, USA, (1987). ACM.

[12] Paul S. Heckbert and Eric Haines, Berg, Mark and Cheong, Otfried,
chapter A Ray Tracing Bibliography, Morgan Kaufmann, 2002.

[13] Zena M. Wood and Antony P. Galton, ‘A taxonomy of collective phe-
nomena’, Applied Ontology, 4, 267–292, (2009).

6

