6 Methodology

Previous chapters have discussed dot patterns, footprints and change identifiers but have
not yet detailed exactly how an application using change identifiers would be constructed.
This chapter provides a framework in which the change identifiers can operate and shows
how the experiments used in this thesis were constructed. The need to formalise the use
of the change identifiers arises from the need to answer the questions that have emerged

from the examinations of dot patterns, footprints and change identifiers namely:
1. How does the dynamic dot pattern data arrive?
2. How is the data stored?
3. How is the footprint algorithm specified?
4. How are the change identifiers run?
5. How are the results displayed?
6. How can the system be tested?

The change identifier framework proposed in this chapter to encompass the running of
the identifiers is highly modular (Fig. 6.1) in construction allowing each of the above
mentioned concerns to be dealt with individually. As shown in Fig. 6.1 the core engine of
the framework requires a change identifier set and a footprint algorithm. The dynamic dot
pattern is read by a buffer that ‘feeds’ a pattern for every timestep to the core; this pattern
is processed in accordance with the change identifier set and, if an update is required, a
footprint is generated using the footprint algorithm. The core sends a footprint for each
timestep to the application layer (if an update has not occurred this is the same as the

previous footprint) which then displays the footprint to the user.

6.1 How does the dynamic dot pattern data arrive?

When considering the way in which the dynamic dot pattern data arrives we wished to
remove as many assumptions about the data as possible. The buffer (see Fig. 6.1) can be
configured to work with different formats but for this thesis we use only what we consider
as the bare minimum data configuration, a text file of dot locations at a given timestep
with no identity information (and no guarantee that any two files have the same dot at
the same position within the file). It could be argued that identity and location (or a

movement vector) for the entities that have changed is less information than all of the dot

100

6. Methodology

'. Dot Pattern
° Buffer

Dynamic Dot
Pattern

<CIS>

</CIS>
Core

Change _
Identifier Set Engine

~a User

Footprint

Footprint
Algorithm

Appm cation
Layer

Change Identifier Framework

Figure 6.1 Modular Framework Architecture

locations, as it will produce a smaller file, however we took the view that reducing the

types of information required would make the framework more generally applicable.

6.2 How is the data stored?

Storage of the dot pattern is a complex problem as it strongly affects the running of the
change identifiers. Not having an identity associated with the dots makes performing up-
dates on an existing structure difficult, so ideally the storage format should have a fast
construction time. The main aim when considering possible data structures is to provide
simple and fast access to the dots that the identifiers request. We can not provide an
optimised structure to achieve this because there is no way to know in advance all pos-
sible queries that can be made by change identifiers (there being no end to the number
of identifiers that can be imagined). Instead we look at the requests that we most com-
monly come across in the identifiers created in for this thesis; under the assumption that
these common queries are likely to be consistently occurrent across the set of all possible
identifiers. What we find is that most of the identifiers only wish to sum the values of the
location vectors, find the centroid, find extremal points in some dimension or find (esti-
mated) nearest neighbours. This can be achieved by maintaining as many ordered binary
trees as dimensions (one for each element in the location vector). These binary trees can
be built concurrently as dots from the data file are parsed. We should note that Java

(the language the framework is written in) already implements the red-black tree (Guibas

101

6. Methodology

and Sedgewick [32]) in its ordered sets, however even if this was not the case, red-black
trees are a suitable data structure for our purposes. As was discussed in the background
chapter, the red-black tree is a binary tree (each node has at most two children) with
two different types of edge: red and black, and this dichromatic approach allows it to be
considered as analogous to a 2-3 B-tree (a tree that can have a up to two values at each
node [? |) by thinking of the red edges as horizontal links with a black node between
them. Its structure allows for easier balancing and a computationally fast insertion time
without hindering its search time. As the data structure is rebuilt for each phase, the
red-black trees fast insertion and search times make it a sensible choice. The big-O nota-
tion of the complexity for a red-black tree is O(logn) for both insert and search time in
normal and worst cases. The footprint algorithms will also benefit from the small search
times provided by the data structure so they are by no means being hampered when we
compare the time taken of using change identifiers against the time taken to update the
footprint at each phase. As a final note on data structures: If the format that the data
arrives in changes drastically, the buffer being distinct from the main core of the process

renders the process of changing the data structure relatively easy!.

6.3 How is the footprint algorithm specified?

The footprint algorithm is specified at the initialisation of the program. Which would be
straight-forward if not for the footprint selection and parameterisation. The classification
given in Chapter 4 will aid the selection of the footprint algorithm as, ideally, the user
knows in advance the geometric requirements for the footprint (for example, must it be
able to contain cavitities?)2. The parameter choice is beyond the purview of this thesis
but we discuss in Chapter 10 how the identifiers might be used to help with its selection
as the dynamic dot pattern changes and how the dot pattern descriptors might be used

to inform the inital choice.

6.4 How are the change identifiers run?

Chapter 5 detailed how the change identifiers are described using the XML specification.
The specifications are loaded into the core of the framework and the process that is im-
plemented is shown in Algorithm 1, which works as follows: The incoming data consists
of a sequence of dot patterns (e.g., from observations relayed by sensor arrays or from
RFID tags attached to a flock of animals). At the beginning of the sequence a footprint
footprint(¢y) is generated for the dot pattern at phase ¢y and saved as the stored footprint
SFPy. The phase ¢ from which it is generated is stored as the stored dot pattern (SDPy).

At subsequent time steps, the change identifiers are used to determine whether a new foot-

print should be computed; this is done by evaluating the extent to which the current phase

'Relative to changing the way the change identifiers are run or read in to the core
2The data structure may rule out some footprint algorithms that require intensity values or identities but
as mentioned earlier it allows the framework to be applicable to more applications.

102

6. Methodology

¢; differs from the previously stored dot pattern SDP;_;. If this value, eval(¢;, SDP;_1,SFP;_1),
exceeds some pre-set threshold, then a new footprint footprint(¢;) is generated as the new
stored footprint SFP;, and the current phase is used as the new stored dot pattern DP;.
Otherwise, the stored dot pattern and footprint are retained from the previous time step.

For any phase ¢;, the footprint footprint(¢;) that would be computed from it (whether

or not this computation actually takes place) will be referred to (admittedly somewhat
tendentiously, bearing in mind the non-uniqueness of the footprint) as the true footprint

for that dot pattern.

Algorithm 1 Process at the Core

1: =0

2: Input first dot pattern ¢g
3: SFPy = footprint(¢;)

4: SDPy = 0%

5: repeat

6: 1=1+1

7. Input ¢;

8: if eval(¢;, SDP;_1,SFP;_1) > threshold then
9: SDP; = ¢;

10: SFP; = footprint(¢;)
11: else

12: SDP; = SDP,_4

13: SFP; = SFP;_4

14: end if

15: until No more input available

6.5 How are the results displayed?

The display of the footprint is handled by the application layer. This is a necessary part of
the framework for any real-world application but less so for the experiments performed in
this thesis. As such the version of the program used for the experimentation runs on the
command line without a Graphical User Interface (GUI). Aside from the user interface,
another core difference between a testing environment and a real world application is in the
consideration of the length of the dynamic dot pattern. It has been previously stated that
the that there should be no restriction imposed on the length of the dynamic dot pattern
so the framework must be constructed so that it can, theoretically, be run indefinitely.
However any set of test data must come to an end and the length of the dynamic dot

pattern must be known so that proper analysis can be performed.

6.6 How can the system be tested?

Over the course of the run on the dynamic dot pattern, the framework can store data that
at the conclusion is passed to the test application. For example the length of time taken
to process each change identifier, the time taken to process the entire time step and the

change identifier that caused an update of the footprint (if any). Immediately after this

103

6. Methodology

Figure 6.2 Hausdorff Distance Example

run the test application makes a call to the core for it to repeat a run over the dynamic
dot pattern updating the footprint at each time step. This provides the above mentioned
true footprint for each time step. As described in Chapter 5 we can use the difference
between the true footprint and the stored footprint at each time step to get a measure for
error. For this measure to be useful it must return a distance of 0 if the true footprint

and the stored footprint are identical.

There are a number of different methods with which to ascertain the distance between two
regions. Hausdorff distance, Fréchet boundary separations and symmetric area difference
are three of the possible metrics that perform the measurement with different approaches
([23, ch. 7.3]). The Hausdorff distance is the greatest distance between a point within
a region and the closest point in the an other, Fig. 6.2 shows an example of in which
the greatest distance is from footprint Y to footprint X. Hasudorff distance has two
variations: the Hausdorff boundary separation and the dual-Hausdorff distance. Hausdorff
boundary separation is the Hausdorff distance of the boundaries of the regions and the
dual-Hausdorff distance is the greatest of the Hausdorff distance of the two regions and

the Hausdorff distance of the closed complements of the two regions.

Fréchet distance requires us to imagine the boundaries of the footprints as paths, then the
returned distance is the distance of a line that connects the two paths at any two points.
The standard illustration given of this is of a dog and its walker on the separate paths that

travel at independant speeds; the Fréchet distance is the minimal length of leash required.

The symmetric area difference between two regions comprises the cumulative area of the

parts of each region that do not overlap the other; it is given by
R1ARy = (Rl \ RQ) U (RQ \ Rl) = (R1 U RQ) \ (Rl N Rg).

An example of symmetric area difference is given in Fig. 6.3, the shaded region in Fig. 6.3(a)

is the parts of the regions (X and Y') that do not coincide with any part of the other region

104

6. Methodology

(a) Two footprints: X and Y. (b) The shaded region represents the sym-
metric area difference between footprints X
and Y.

Figure 6.3 Symmetric area difference

((X\Y)U(Y\ X)) and the area of these parts is, therefore, the symmetric area difference
of X and Y.

Galton [23, ch. 7.3] provides a comprehensive discussion on these three metrics and how
they relate. For now we note that symmetric area difference is the simplest to compute
requiring only that the intersections between the vertices be found. It is also an intuitively
clear method for measuring the similarity of the footprints, which we consider as regions,
because it concerns itself with the contents of the footprint instead of its bounds. Given this
simplicty and intuitive nature it is the measure we use for the experimentation performed
for this thesis. Future work could examine whether different similarity measures would
provide different results in the comparison of change identifiers. Although the author notes
that, as long as the area of the symmetric difference provides a good measure of similarity,
any difference is likely to be small. This is because the measures will only give different
levels of similarity in certain specific cases (e.g., the footprint has a large external spike)
and such cases are unlikely to happen consistently across the dynamic dot pattern. In
effect the cases where one measure concludes that the footprints as similar and alternative

measure does not will probably average out over the run of the dynamic dot pattern.

We use the area of this as a measure of the dissimilarity between two footprints; and
since we are only interested in comparisons, not absolute values, we normalise this area by
expressing it as a fraction of the area of the ‘true‘ footprint (footprint(DP;)). Thus the
aggregate mismatch between the stored footprint and the true footprint over a dot-pattern

sequence of length n is given by

n y
‘ || footprint(DP;)A SFP; ||
tch = E
msmatc v Hfootp?“lnt(DPz)H)

105

6. Methodology

6.7 Wasteful Processing

As an addendum to considering the methodology we not two ways in which excess com-

putation can be prevented.

Many of the discussed identifiers make use of the same calculations (e.g. bounding box,
centroid). It would be wasteful to perform these calculations for each identifier so a data
table is attached to each time step in the dynamic dot pattern. The identifiers can query
this data table, if a value does not exist then they calculate it and add it to the table for
the benefit of any identifier that may require it.

Another, minor, way in which run time can be improved is to reduce the number of times
the data is iterated by considering the fashion in which dots enter the application. While
for this thesis a complete list of dot positions is assumed at each time step it is also
possible that the data is a description of the change for each dot (a list of dot identities
with translation vectors and markers to indicate addition or removal). For either of these
cases the data will not/can not arrive in the format that the software requires. It must first
be translated, in our case to Java point objects. If we perform all the required iterative
calculations at this pre-processing stage we slightly slow down the speed at which the
patterns are received but can possibly improve the performance of the identifiers by saving

them the need to iterate over the pattern.

6.8 Summary

This chapter has provided a framework for the change identifiers to be run within that
allows for both real-world application use and for assessment. When considering the
assessment of the change identifiers it has discussed three footprint difference measures
and shown why symmetric area difference has been used for the experimentation within
this thesis.

Finally this chapter has made a note of two possible ways in which the running of the

change identifiers can be optimised to reduce wasteful computation.

106

Bibliography

1]

H. Alani, C. B. Jones, and D. Tudhope. Voronoi-based region approximation for geo-
graphical information retrieval with gazetteers. International Journal of Geographical
Information Science, 15(4):287-306, 2001.

Walid Ali and Bernard Moulin. 2d-3d multiagent geosimulation with knowledge-based
agents of customers shopping behavior in a shopping mall. In AnthonyG. Cohn and
DavidM. Mark, editors, Spatial Information Theory, volume 3693 of Lecture Notes in
Computer Science, pages 445-458. Springer Berlin Heidelberg, 2005.

Natalia Andrienko and Gennady Andrienko. Designing visual analytics methods for

massive collections of movement data. Cartographica, 42(2):117-138, 2007.

Avi Arampatzis, Marc van Kreveld, Iris Reinacher, Christopher B. Jones, Subodh
Vaid, Paul Clough, Hideo Joho, and Mark Sanderson. Web-based delineation of
imprecise regions. In Computers, Environment and Urban Systems, volume 30, pages
436-459. Elsevier, 2006.

Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile
data. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’97, pages 747-756, Philadelphia, PA, USA, 1997. Society for Industrial
and Applied Mathematics.

R. Bayer and E. M. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1:173-189, 1972.

Marc Benkert, Joachim Gudmundsson, Florian Hiibner, and Thomas Wolle. Report-

ing flock patterns. Computational Geometry - Theory and Applications, 2007.

Brandon Bennett, Derek R. Magee, Anthony G. Cohn, and David C. Hogg. Enhanced
tracking and recognition of moving objects by reasoning about spatio-temporal con-

tinuity. Image and Vision Computing, 26(1):67-81, January 2008.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computa-
tional Geometry, Algorithms and Applications. Springer, third edition, 2008.

D. Black. Investigation of the possible increased incidence of cancer in West Cumbria:
report of the Independent Advisory Group. H.M.S.O., 1984.

P Bogaert, N Van de Weghe, AG Cohn, F Witlox, and P De Maeyer. Reasoning
about moving point objects on networks. In M Raubal, J H Miller, U A Frank,

and F Goodchild, editors, 4th International Conference on Geographic Information
Science (GIScience 2006), 2006.

147

Bibliography

[12]

[13]

[14]

[21]

[22]

[26]

A. Ray Chaudhuri, B. B. Chaudhuri, and S. K. Parui. A novel approach to com-
putation of the shape of a dot pattern and extraction of its perceptual border. In
Computer Vision and Image Understanding, volume 68, pages 257-275. Academic
Press, 1997.

Yi-Jen Chiang and Roberto Tamassia. Dynamic algorithms in computational geom-
etry. In Proceedings of the IEEFE, number 9, pages 1412-1434, 1992.

Kalyanmoy Deb. Multi-Objective Optimization using evolutionary Algorithms. Wiley,
2001.

Géraldine Del Mondo, John G. Stell, Christophe Claramunt, and Rémy Thibaud. A
graph model for spatio-temporal evolution. Journal of Universal Computer Science,
16(11):1452-1477, 2010.

Matthias Delafontaine, Anthony G. Cohn, and Nico Van de Weghe. Implementing a
qualitative calculus to analyse moving point objects. FExpert Systems with Applica-
tions, 38(5):5187-5196, 2011.

Somayeh Dodge, Robert Weibel, and Anna-Katharina Lautenschiitz. Towards a tax-

onomy of movement patterns. Information Visualization, (7):240-252, 2008.

Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient generation
of simple polygons for characterizing the shape of a set of points in the plane. In
Pattern Recognition, volume 41, pages 3224-3236. Elsevier, 2008.

Max Dupenois and Antony Galton. Assigning footprints to dot sets: An analytical
survey. In K. S. Hornsby, C. Claramunt, M. Denis, and G. Ligozat, editors, Spatial
Information Theory: Proceedings of the 9th International Conference COSIT 2009,
pages 227244, Berlin, 2009. Springer.

H. Edelsbrunner. Weighted alpha shapes. Technical Report UIUCDCS-R-~92-1760,

Department of Computer Science, University of Illinois, 1992.

H. Edelsbrunner and E. P. Miicke. Three-dimensional alpha shapes. In ACM Trans-
actions on Graphics, volume 13, pages 43-72. 1994.

Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape of
a set of points in the plane. In Computer Vision and Image Understanding, volume
1T-29, pages 551-559. IEEE, 1983.

Antony Galton. Qualitative Spatial Change. Oxford University Press, 2000.

Antony Galton. Pareto-optimality of cognitively preferred polygonal hulls for dot
patterns. In Spatial Cognition, 2008.

Antony Galton and Matt Duckham. What is the region occupied by a set of points?
In GIScience, 2006.

Yossi Gofman. Outline of a set of points. Pattern Recognition Letters, 14(1):31-38,
1993.

148

Bibliography

[27]

[35]

[37]

[38]

Christopher M. Gold. Data structures for dynamic and multidimensional gis. In 4th
ISPRS Workshop on Dynamic and Multi-dimensional GIS, pages 36—41, Pontypridd,
Wales, UK, 2005.

D E Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

Ronald L. Graham. An efficient algorithm for determining the convex hull of a finite
planar set. Inf. Process. Lett., 1(4):132-133, 1972.

Leonidas Guibas. Kinetic data structures. In D. Mehta and S. Sahni, editors, Hand-
book of Data Structures and Applications, pages 23-1-23-18. Chapman and Hal-
1/CRC, 2004.

Leonidas Guibas, Menelaos Karaveles, and Daniel Russel. A computational frame-
work for handling motion. In Proceedings of teh Sixzth Workshop on Algorithm Engi-
neering and Experiments, pages 129-141, 2004.

Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced

trees. Foundations of Computer Science, IEEE Annual Symposium on, 0:8-21, 1978.

John Hershberger and Subhash Suri. Convex hulls and related problems in data
streams. In Proceedings of ACM/DIMACS Workshop on Management and Processing
of Data Streams, pages 148-168, 2003.

Kathleen Hornsby and Max J. Egenhofer. Qualitative representation of change. In
S. Hirtle and A. Frank, editors, Spatial Information Theory: A Theoretical Basis for
GIS, Proceedings of the International Conference COSIT’97, pages 15-33. Springer-
Verlag, 1997.

Yan Huang, Cai Chen, and Pinliang Dong. Modeling herds and their evolvements from
trajectory data. In GIScience ’08: Proceedings of the 5th international conference on
Geographic Information Science, pages 90-105, Berlin, Heidelberg, 2008. Springer-
Verlag.

R. A. Jarvis. On the identification of the convex hull of a finite set of points in
the plane. In Information Processing Letters, volume 2, pages 18-21. North-Holland
Publishing Company, 1973.

Jixiang Jiang and Michael Worboys. Detecting basic topological changes in sensor
networks by local aggregation. In Proceedings of the 16th ACM SIGSPATIAL inter-
national conference on Advances in geographic information systems, GIS ’08, pages
4:1-4:10, New York, NY, USA, 2008. ACM.

Jixiang Jiang, Michael Worboys, and Silvia Nittel. Qualitative change detection
using sensor networks based on connectivity information. Geolnformatica, 15:305—
328, 2011.

R Klette and A Rosenfeld. Digital Geometry: Geometric Methods for Digital Picture
Analysis. Morgan Kaufmann, 2004.

149

Bibliography

[40]

[41]

[42]

Donald Knuth. The Art Of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, 2nd edition, 2007.

P. Laube, M. Van Kreveld, and S. Imfeld. Finding remo - detecting relative motion
patterns in geospatial lifelines. In P. F. Fisher, editor, Developments in Spatial Data
Handling: Proceedings of the 11th International Symposium on Spatial ata Handling,
pages 201-214. Springer, 2004.

Patrick Laube, Matt Duckham, and Marimuthu Palaniswami. Deferred decentralized

movement pattern mining for geosensor networks. International Journal of Geograph-
ical Information Science, 25(2):273-292, 2011.

Patrick Laube and Ross S. Purves. How fast is a cow? cross-scale analysis of move-
ment data. Transactions in GIS, 15(3):401-418, 2011.

Mahmoud Melkemi. A4-shapes of a finite point set. In Proceedings of the thirteenth
annual symposium on Computational geometry, SCG ’97, pages 367-369. ACM, 1997.

Mahmoud Melkemi and Mourad Djebali. Computing the shape of a planar points
set. Pattern Recognition, 33(9):1423 — 1436, 2000.

Mahmoud Melkemi and Mourad Djebali. Weighted o/-shape: a descriptor of the
shape of a point set. Pattern Recognition, 34(6):1159 — 1170, 2001.

Adriano Moreira and Maribel Yasmina Santos. Concave hull: A k-nearest neigh-
bours approach for the computation of the region occupied by a set of points. In
International Conference on Computer Graphics Theory and Applications GRAPP,
2007.

David O’Sullivan and David J. Unwin. Geographic Information Analysis. Wiley,
November 2002.

Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane.
Journal of Computer and System Science, 23(2):166-204, 1981.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
In Proceedings of the 14th annual conference on Computer graphics and interactive

techniques, SIGGRAPH 87, pages 25-34, New York, NY, USA, 1987. ACM.

P.L. Rosin. Measuring shape: ellipticity, rectangularity, and triangularity. In Pattern
Recognition, 2000. Proceedings. 15th International Conference on, volume 1, pages
952 —955 vol.1, 2000.

John G. Stell. Granularity in change over time. In M. Duckham, M. Goodchild,
and M Worboys, editors, Foundations of Geographic Information Science, chapter 6,
pages 95 — 115. Taylor and Francis, 2003.

Marius Thériault, Christophe Claramunt, and Paul Villeneuve. A spatio-temporal
taxonomy for the representation of spatial set behaviours. In Michael Bhlen, Christian

Jensen, and Michel Scholl, editors, Spatio-Temporal Database Management, volume

150

Bibliography

1678 of Lecture Notes in Computer Science, pages 1-18. Springer Berlin / Heidelberg,
1999.

Zena Wood. Detecting and Identifying Collective Phenomena within Movement Data.
PhD thesis, University of Exeter, 2011.

Zena Wood and Antony Galton. A taxonomy of collective phenomena. Applied
Ontology, 4:267-292, August 2009.

Michael Worboys. Event-oriented approaches to geographic phenomena. International

Journal of Geographical Information Science, 19:1-28, 2005.

Michael Worboys and Matt Duckham. GIS: A Computing Perspective, chapter 6.4
Point Object Structures, pages 240 — 248. CRC Press, 2nd edition, 2004.

J. Zunic and P.L. Rosin. A convexity measurement for polygons. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26:173-182, 2002.

J. Zunic and P.L. Rosin. Rectilinearity measurements for polygons. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 25(9):1193 — 1200, September 2003.

151

