
Report on Work Done 16/03/2011 – 06/05/2011

Maximillian Dupenois Antony Galton

This report concerns the work completed since the submission of a paper to COSIT
2011. It comprises three parts:

1. Discussion of the descriptors that are part of the COSIT 2011 paper. Focusing on
the removal of density as a base level descriptor and the addition of orientation.
Density will be discussed as a descriptor that encompasses 2 base descriptor
types.

2. Parameter control; there is possibly a paper to be made on this topic. Looks at
maintaining the ration between area and perimeter2. Probably requires a similar
specification file to the one used by change identifier sets for the purposes of
choosing algorithm, starting parameter, accepted range for the parameter/area
and how the change in parameter will affect the ratio.

3. Framework layout :- Pointing out that the thesis is presenting a framework in
which to use change identifiers, not just the identifiers themselves.

1 Dot pattern descriptors
The dot pattern descriptors given in the submitted version of the COSIT 2011 paper
include density. Density is an descriptor that is a combination of extent and cardinality
measures and as such is not a true base descriptor. To make things clear it is a good
idea to fix the nomenclature to concrete definitions:

• Descriptor: A facet of information about the dot pattern which can be measured.

• Base Descriptor: A descriptor which is measured from information given by the
pattern and does not include any other descriptor in its measurement.

• Combined Descriptor: A descriptor which uses information from other descrip-
tors to provide its measurement e.g., density uses cardinality and extent.

• Intrinsic Descriptor Method: A method for returning a measurement value for a
descriptor that uses only the dots of the pattern as its information base.

• Surrogate Descriptor Method: A method for returning a measurement value for a
descriptor that uses a surrogate footprint (commonly the isothetic bounding box)
for the dot pattern as its information base.

• Change Identifier: A method for measuring change in a descriptor type using
either a surrogate or intrinsic descriptor method.

1



As in the paper the three base descriptors of extent, cardinality and position. We
can extend this list to include orientation, which measures the alignment of the pat-
tern to the xy-axis. It is cognitively easy to envision measures for this value using a
surrogate method, for example the gradient of the longest line of the aligned bounding
box. However this leads to two problems. Firstly if the aligned box is square there is
no longest side and it may be more appropriate to say it has a null orientation being
essentialy rotation invariant. Secondly finding the aligned minimum bounding box in
linear time requires the convex hull to be found first. In fact any aligned surrogate will
probably require the convex hull to be found as all extremal dots will likely need to be
found. This may well take too long for our time constraints.

An intrinsic method can be found by examining the pattern as if it were a graph and
using a line of best fit to provide a gradient. There are many ways in which to do this
but as we are most interested in how the orientation changes (as opposed not providing
the most accurate measure) the ordinary least squares method seems most appropriate.
[SHOW HOW WORKS AND RESULTS OBTAINED FROM ITS USE].

2 Parameter Control
Perimeter and area provide a useful, if crude, way of assessing the suitability of a given
footprint. This follows from the work performed in [REF-GALTON] in which it was
shown that any cognitively appropriate footprint for a dot pattern will tend to fall on
the pareto front of an area perimeter graph. Specifically the ‘best’ footprints fall on the
‘knee’ of the graph where a balance between area and perimeter is found. If we assume
that it is an acceptable task to ask of a user we can begin any run over a stream of dot
patterns with the knowledge of what ratio of area to perimeter2 (squared to keep the
units the same) is required for this context. Given a starting parameter we should be
able to adjust this value based on attempting to achieve or maintain the given ratio. To
perform this kind of adjustment we will need to know how the parameter affects the
ratio; fortunately for most algorithms this information is known [EXAMPLES]. If such
information is not available, as in [EXAMPLE], we can instead suggest to the user that
the given parameter is no longer suitable and request that it be changed. There are other
possible measurements we can make on the footprint as judgements on its suitability
(e.g., sinuosity) however any further factors to attempt to control make knowing in
which direction to alter the parameter more complicated. As well as achieving a more
accurate representation of the dot pattern this kind of change tracking allows us give
more information about the fashion in which the dot pattern is changing. If the area
is increasing without large increases in parameter the the pattern is becoming more
spherical. If, however, the perimeter is increasing and the area is not keeping pace (or
decreasing) then the pattern is becoming less uniform; possibly indicative of the pattern
undergoing seperation.

3 Framework
The identifiers are an interesting intellectual exercise but require a rigid structure in
which to perform to be useful. The identifiers are small measuring devices for often
very specific types of change. They do not communicate with each other as the can

2



concievably run in parallel1. They do, however, often require the same pre-computed
structures or values for a specific dot pattern; e.g., the centroid or minimum isothetic
bounding box. In fact for all but the first time step the pattern previous to the current
will already have had values computed for most if not all the descriptors; as such the
identifier does not want to compute these all again for the comparison to the current
values. To keep track of these re-usable measurements and structures a container is
required and this container will need to be specific to each dot pattern. To maintain
modularity, and thereby maintain clarity of design, this is seperated into a structure of
its own. In considering the structure holding these values we must devote some thought
to how we approach storing the patterns themselves.

When first testing the concept of change identifiers some assumptions needed to be
made about the manner in which the patterns would arrive to the framework. Would
they be a set of identified vectors indicating which dot had moved by what magnitude
and direction? Would the dots even have identities distinguishing them from pattern to
pattern? How would the loss of old or addition of new dots be described? With so many
possibilities it was decided to use the form with the minimal amount of information to
provide the greatest range of possible applications. The dots are expected to arrive as
a set of cartesian co-ordinates showing position at the timestep the pattern represents.
Within the set there is no indicator of identity, rendering trailing a specific dot across
the timesteps impractical.

Having decided upon the fashion in which the dots arrive does not directly tell us
how best to store them. As there is no explicit identity the pattern storage structure
will have to be re-created at each timestep so we can ignore update times for the struc-
ture. This leaves searching and insert as our time constraints. Most data structures
are created with low insert times, particularly if the co-ordinates have been pre-sorted.
Searching, however, is an issue as all structures are optimised for one (or few) search
types and it can not be guaranteed that an descriptor method (or footprint algorithm)
will not require a fast search for a coordinate that the current structure does not provide.
If the insert time is guaranteeably small we can use more than one type of structure;
covering for multiple search types. Unfortunately even with this precaution it may not
be possible to fully satisfy all search criteria in an optimal time.

The identifiers also require a skeleton under which to operate to combine their
returned values and check the sum against a threshold. This skeleton is called the
change identifier set.

1Although for most tests it was found starting the individual threads would take longer than running the
identifiers.

3


