
College of Engineering, Mathematics

and Physical Sciences

Change Identifiers

Maximillian Dupenois

Supervisors: Antony Galton and Jovisa Zunic

November 25, 2010

Contents

1 Introduction 2

2 Background 3
2.1 Footprints . 3
2.2 Dot Patterns . 5
2.3 Change . 6

3 Footprints and Dot Patterns 7
3.1 Footprint Descriptors . 7
3.2 Dot Pattern Descriptors . 7
3.3 Parameterisation . 7

4 Change Identifiers 8

5 Framework 11

6 Results 12

7 Minimisation and Optimisation 13

8 Optimal Parameter Selection 14

9 Shape Information 15

10 Conclusions 16

Chapter 1

Introduction

2

Chapter 2

Background

2.1 Footprints

There is a fairly large body of work about the generation of footprints, publi-
cations from as early as 1973 ([10]) presenting a variety of different algorithms
to create representational shapes from dot patterns. Amongst this there are
surprisingly few that examine the footprints created in a comparative fashion.
Also conspicuous by its absence is a systematic approach to determining the
quality of the produced footprint, (author?) [7] makes significant inroads in to
both determining how ‘good’ a footprint is and why this is difficult to judge.

The rest of this section consists of analysis of some of the existing literature
in chronological order.

(author?) [10] presents an algorithm, since called the ‘Jarvis March’ to gen-
erate the convex hull of a dot pattern. The convex hull is almost a base level of
footprint algorithm, it is easily computable and has distinct mathematical prop-
erties. Importantly the convex hull is unique for any particular dot pattern. This
paper was amongst the first to give an efficient algorithm for its computation
and is such amongs the first to attempt to provide a representational shape for
a dot pattern.

The convex hull is not without it’s problems as a representation.
COMMENT: [INSERT FIGURE SHOWING CONVEX HULL LOSING CON-

CAVITY]
As can be seen in COMMENT: [figure]the convex hull can potentially lose infor-

mation about the shape. COMMENT: [From here to cosit paper reference is basi-
cally plaigarising myself, need to rewrite]An algorithm capable of reaching a better fit
representation is a non-trivial problem and one of the earliest, and much-referenced,
papers on the subject is by (author?) [6]. The method produces straight-line graphs
called α-shapes, obtained from a generalisation of the convex hull. For a set S the
convex hull can be considered to be the intersection of all closed half-planes that con-
tain all the points of S. The α-hull is obtained by using closed discs of radius 1/α
instead of half-planes; the α-shape is derived from this in a straightforward way. The
authors do not discuss any principled way to choose the appropriate α for the type of
shape required.

(author?) [3] present two methods for generating a footprint, called the external
shape, from a dot pattern. Although they use the term ‘dot pattern’ they make no
distinction between points and dots. For the first method, a grid of squares of side-
length s is drawn on the plane, and the union of all grid-squares containing at least

3

one of the dots is returned as the footprint, called the s-shape. For the r-shape they
inscribe a disc of radius r round each dot, and draw an edge connecting any pair of
dots whose discs intersect in a point not contained in any of the other discs. These
edges provide an outline which, in our terms, may be regarded as the boundary of the
footprint. As with the α-shape, no principles are given for selecting appropriate values
of r or s.

(author?) [9] propose a ‘split and merge’ method for generating footprints. This
method starts from the convex hull and attempts to refine it to a shape more closely
resembling what they refer to as the underlying shape. The method consists of three
separate algorithms (four if the convex hull algorithm is included): splitting, isolation,
and merging. This is one of the few algorithms that provides a way of aiming for a
particular shape without having to re-run the algorithm with different parameters, so
long as the user is able to identify a desired maximum area or number of sides just
from a cursory examination of the dot pattern. Again the authors say little about the
quality or type of footprint they generate.

(author?) [1] developed the Dynamic Spatial Approximation Method (DSAM).
This system takes in both the dot pattern of the region to be found and the dot pattern
of the area known to exist outside the region. It builds a Voronoi diagram based on
these coordinates and takes the union of all the cells which contain an ‘interior’ point
as its footprint. This work pays more attention than many in the area to the quality
of footprint produced; this can be assessed in terms of how closely the region found
fits the expected region. The existence of a contextually determined target shape
differentiates this paper from others in the field.

(author?) [2] follow on from ?]. However, they adapt DSAM to use Delaunay tri-
angulations in conjunction with a system for finding point locations using web queries.
They call this adaptation the recolouring algorithm and use it to generate boundaries
for imprecise regions. Much like the DSAM this system has a target shape and, as
such, this paper has more analysis of the footprint found than much of the field.

(author?) [8] propose two methods for finding footprints. The first method is a
generalisation of the Jarvis March (‘gift-wrapping’) algorithm for convex hulls. The
idea behind the Jarvis March is simple. From an origin point outside the dot set
a radial half-line is swung in an arbitrary direction until it meets one of the dots.
This dot is made the new origin point from which a radius is swung in the same
direction as before until it meets another dot. This is repeated until the first dot
is encountered again; the sequence of dots encountered in this way form the vertices
of the convex hull. Dots are removed from consideration if they have already been
marked as being on the convex hull or if they lie within the area enclosed by the dots
encountered so far. The ‘Swinging Arm’ algorithm is similar except that it uses a line-
segment of some predetermined length instead of a half-line. The second method starts
with the Delaunay triangulation and successively removes the longest external edge,
subject to constraints of maintaining connectedness and regularity, until either some
predetermined minimum length is reached, or no more edges can be removed. The
authors note that there can be no uniquely ‘optimal’ footprint when the application
context is considered to be general. The paper proposes nine criteria which may be
used for evaluating footprint algorithms with respect to different application contexts,
although little is said about any actual applications.

(author?) [11] present a ‘Concave Hull’ algorithm. Like the Swinging Arm, Con-
cave Hull is also derived from the Jarvis March algorithm, its difference being that
it always selects the next vertex from the k nearest neighbours of the current vertex.
This is the crux of the algorithm’s effectiveness: by having a non-contextual integer
as the variable that restrains the hull algorithm, they have a default base value from
which they can run the algorithm (i.e. k = 3); if this fails to produce a footprint that
satisfies the criteria (having no intersecting lines and containing all the points) then the
algorithm is run with increasing values of k till such a footprint is created. Like most

4

of the other authors they pay little attention to the quality of the footprint in relation
to any application type, though they do mention the criteria given in [8]. Like the
split and merge method [9], the Concave Hull algorithm requires some pre-processing
of dots, using the Shared Nearest Neighbour (SNN) algorithm to determine any sep-
arable groupings in the dot pattern prior to running the algorithm. Like Garai and
Chaudhuri they do not take account of this pre-processing algorithm in determining
the computational complexity of their own.

(author?) [4] provide a fuller account of the Delaunay-based method introduced
in [8], now called the χ-algorithm. This paper includes a discussion of the footprint’s
properties, and how these are directly tied to the method by which it is created. More
attention is paid to the choice of the length parameter l. There are practical limits on l
for any triangulation (if it is too large then no lines will be removed, if it is too small too
many will be removed) and consequently l can be normalised. Duckham et al. propose
using this normalised parameter (λp) to find a starting value which should achieve
what they call a characteristic shape for many, if not all, dot patterns. While they
conclude that there is no λp that always produces a “good” characterization, the fact
that they spend time considering this is unusual within the field. Unlike (author?)
[11] and (author?) [9], Duckham et al. do not discount the pre-processing (in this
case computing the Delaunay triangulation and sorting the edges) when determining
the complexity of the algorithm.

(author?) [7], instead of proposing an algorithm, searches for objective criteria
for evaluating the acceptability of any proposed footprint in relation to the ‘perceived’
shape of a dot pattern. The paper notes that in most of the published work, “while
lip-service is generally paid to the fact that there is no objective definition of such
a ‘perceived shape’, little is said about how to verify this, or indeed, about exactly
what it means”. Restricting attention to footprints in the form of polygonal hulls,
simple polygons having vertices selected from the dot pattern, all the other dots being
within the interior, the paper presents evidence that while a dot pattern may have
several equally acceptable perceived shapes, they all represent optimal or near-optimal
compromises between the conflicting goals of simultaneously minimising both the area
and the perimeter of the hull.

(author?) [5], suggests a method for classifying the footprints. Unlike (author?)
[7] it does not look at their ‘fitness’ but approaches the subject from a desire to be
able to describe algorithms by the types of footprints they can create. The paper
notes that the context in which the algorithm is being used determines the type of
footprint that is satisfactory. With this in mind it proposes a method of using the
application specific knowledge to limit the choice of algorithms for any particular user
requirement. The classification bears some similarity to the set of criteria proposed
by (author?) [8] for evaluating the footprints produced by different algorithms.

2.2 Dot Patterns

Examining dot patterns has generally been within the vfield of geospatial information.
However, if we move away from real-world phenomena, we can imagine that any data
that can be represented on a 2-dimensional plane (e.g., classification data, multi-
objective optimisation) can be viewed as a dot-pattern. This leads to a daunting
amount of possible literature to examine so the analysis given is by no mean exhaustive
but should serve to give a general overview.

(author?) [12]
COMMENT: [Things to reference:]

• Geographic Information Analysis book, check for further references

• Density measures

• Probability distributions

5

• Existing work on things like variance and mean

• Worboys – Geographic Information Systems: A computing perspective for some
data structures

• see if there is any literature on describing dot patterns within classification or
optimisation

2.3 Change

COMMENT: [List types of dot pattern change, note work on convex hull updating
using data structures]

6

Chapter 3

Footprints and Dot
Patterns

3.1 Footprint Descriptors

3.2 Dot Pattern Descriptors

3.3 Parameterisation

7

Chapter 4

Change Identifiers

Change identifiers are computationally simple operations that indicate some form of
change over any phenomena that may be interpreted as shifting dot patterns. Orig-
inally they were conceived to indicate an appropriate moment in time at which the
footprint should be updated. The footprint is a shape used as a representation of the
dot pattern, the majority of footprint algorithms run in at least O(n log n) time. In
a situation where the patterns arrive as a ‘live’ stream of data it is likely that the
representation would fall behind the actual pattern as the length of time taken to run
the algorithm is greater than the time taken to receive new data. The change ident-
fiers run at each time step are computationally negligible and can be used to indicate
whether an update is necessary or the current footprint is sufficient as a represenation.

In running some preliminary experiments using a convex hull algorithm the change
identifiers were successful at greatly reducing the amount of updates required. However
the speed at which the algorithm ran was so fast, even for very large dot patterns,
that it seemed unlikely there was a possible situation where the patterns could arrive
faster than the run time. While further tests with computationally more expensive
algorithms needed to be run it seemed appropriate to examine other potential uses of
the change identfiers.

One of the fields in which coordinate data arrives in real time is in emergency
situations (wild fires, chemical spills, etc). In these situations a fast and appropriate
response is always the goal. If the change identifiers could not be used to meaningfully
speed up the time taken represent the data could they be used to provide extra useful
information? Often the requirement of those managing the system is not to just
visualise the affected areas but to use this to make decisions about how the area is
changing e.g., is it expanding?, translating?, transforming?. The change identifiers can
be used to provide this information far faster than analysing the footprint because use
generalisations (such as the bounding box) or are only concerned with the patterns
themselves to compare.

Using the χ-hull algorithm (Duckham et al. 2008) as an example of more complex
algorithm it was found that the time taken to run could be in to the seconds1 on
dot patterns of 250 dots. While a run time of secondsdoes not appear to be parti-
cluarly slow algorithm, if the data is arriving faster than the algorithm runs then the
representation gets further and further out of step as can be seen in 4.

Before discussing the creation of the change identifiers there is one more important
possible use. The χ-hull algorithm and, indeed, nearly all other non-convex hull algo-
rithms reqiure an external parameter. There is rarely (not yet found an example of)

1The χ-hull algorithm is actually very fast, however it requires a delaunay triangulation
and even using the divide and conquer method proposed by Guibas and Stolfi this is what
takes the majority of the processing time

8

Time Step Representation Lag
1 - -
2 1 1
3 1 2
4 2 2
5 2 3
6 3 3

Table 4.1: The patterns arrive once a second and the representation takes 2
seconds to run

a systematic method to choose an appropriate parameter, futhermore once chosen, as
the dot pattern changes, it’s unlikely that the parameter will remain appropriate. It
is more than likely that the change identifiers will give either information as to when
the parameter should be updated or even hints as to what the parameter should be
(this depends on how close the parameter is to a geometric facet inherent within the
dot pattern e.g., side length in χ-hull).

When considering possible change identifers it is important to be able to classify
what form of change they measure. Possible spatial change types the patterns can
undergo are2:

• Change in dimension (apparent dimension:- crowd funneling into a queue...)

• Change in connectivity

• Change in location

• Change in orientation

• Change in size

• Change in shape

Note that change in location has been emphasised, while a change identifier that
tracks the centroid is certainly computationally efficient it occupies a special subset
of the identifiers. This identifier allows us to update the footprint without having to
recompute it, translating it along the same vector that the centroid has moved takes
little processing time, and as a result can simply be done at each step. This allows
us to remove location as a factor from any of the other identifiers. As opposed to the
dots existing in an absolute coordinate position they can be relative to the centroid.
This simplification allows the information that the other identifiers return to be more
specific. For example; an identifier that measures the symmetric area difference of
the bounding box of the previous change causing dot pattern and the current would
be affected by the change in location if the positioning is absolute, however when the
positioning is relative it combines measurements of size and dimension.

Change in shape has been bolded because it is the most difficult to accurately
capture, this is obvious on examination as to measure changes in shape most methods
require that the shape is actually created, which would mean recomputing the footprint
and thereby reducing the point in actually using the change identifiers. However, it
can be used to measure the accuracy of the change identifiers. Imagine a stream of dot
patterns, running concurrently with itself. One version of the stream is updating each
time step, call this ALL, and the other uses change identifiers to inform when it should
update, CI. If we ignore lag we can compare the footprint from ALLt (where t is the
time step) with CIt. Measuring the shape difference between these ∀t and averaging
it gives us an overall accuracy of the identifiers. Currently the shape difference used
for these measurements has been the Hausdorff distance.

2Shape change types, taken from Galton, Qualitative Spatial Change, 2000

9

The actual implementation of change identifiers is done in such a way that they
can be combined. The reasoning is that, while each is individually only capable of
indicating change in one facet, collectively they can capture complex changes in shape.
Originally they were threaded such that a multi-core machine could parallel process
them, however it was found that the time taken to create a new thread was often
longer than the identifiers run time.

10

Chapter 5

Framework

11

Chapter 6

Results

Stuff written

12

Chapter 7

Minimisation and
Optimisation

Stuff written

13

Chapter 8

Optimal Parameter
Selection

14

Chapter 9

Shape Information

15

Chapter 10

Conclusions

Stuff written

16

Bibliography

[1] H. Alani, C. B. Jones, and D. Tudhope. Voronoi-based region approximation
for geographical information retrieval with gazetteers. International Journal of
Geographical Information Science, 15(4):287–306, 2001.

[2] Avi Arampatzis, Marc van Kreveld, Iris Reinacher, Christopher B. Jones, Subodh
Vaid, Paul Clough, Hideo Joho, and Mark Sanderson. Web-based delineation of
imprecise regions. In Computers, Environment and Urban Systems, volume 30,
pages 436–459. Elsevier, 2006.

[3] A. Ray Chaudhuri, B. B. Chaudhuri, and S. K. Parui. A novel approach to com-
putation of the shape of a dot pattern and extraction of its perceptual border. In
Computer Vision and Image Understanding, volume 68, pages 257–275. Academic
Press, 1997.

[4] Matt Duckham, Lars Kulik, Mike Worboys, and Antony Galton. Efficient gen-
eration of simple polygons for characterizing the shape of a set of points in the
plane. In Pattern Recognition, volume 41, pages 3224–3236. Elsevier, 2008.

[5] Max Dupenois and Antony Galton. Assigning footprints to dot sets: An analytical
survey. In K. S. Hornsby, C. Claramunt, M. Denis, and G. Ligozat, editors, Spa-
tial Information Theory: Proceedings of the 9th International Conference COSIT
2009, pages 227–244, Berlin, 2009. Springer.

[6] Herbert Edelsbrunner, David G. Kirkpatrick, and Raimund Seidel. On the shape
of a set of points in the plane. In Computer Vision and Image Understanding,
volume IT-29, pages 551–559. IEEE, 1983.

[7] Antony Galton. Pareto-optimality of cognitively preferred polygonal hulls for dot
patterns. In Spatial Cognition, 2008.

[8] Antony Galton and Matt Duckham. What is the region occupied by a set of
points? In GIScience, 2006.

[9] Gautam Garai and B. B. Chaudhuri. A split and merge procedure for polygonal
border detection of dot pattern. In Image and Vision Computing, volume 17,
pages 75–82. Elsevier, 1999.

[10] R. A. Jarvis. On the identification of the convex hull of a finite set of points in the
plane. In Information Processing Letters, volume 2, pages 18–21. North-Holland
Publishing Company, 1973.

[11] Adriano Moreira and Maribel Yasmina Santos. Concave hull: A k-nearest neigh-
bours approach for the computation of the region occupied by a set of points.
In International Conference on Computer Graphics Theory and Applications
GRAPP, 2007.

17

[12] David O’Sullivan and David J. Unwin. Point Pattern Analysis. Wiley, November
2002.

18

