
Change Identifiers

Max Dupenois

1 Introduction

This is a listing of the various possible change identifiers and the processes used
to caclulate them.

2 Form

All change identifiers should be of the form:
Input: The current dot pattern D.
Input: The previous value of this identifer ci−1.
Input: The current footprint F .
Output: A value x indicating the change amount.

3 Normalisation

For the values to be useful they will need to be normalised to stop any inherent
prioritisation. AS such we should be able to get all values between 0 and 1,
hopefully.

4 Change Identifiers

4.1 Change in centroid scaled by the bounding box

Requires: D and ci−1

Preferred Data Structure: Binary search tree such that extreme x and y
dots are swiftly located.

Process:
The centroid is found by C = d0+d1+···+dn−1

n , where n is the number of
dots and d0 · · · dn−1 is a dot from the set. However we need to scale by
the bounding box so that we can know whether or not the change is small.
Fig. 1 demonstrates this scaling effect.

Pseudo-code: see Algorithm 1

Complexity: O(n)

Normalisation: To scale this value we need a maximum possible change.. not
sure yet

1

Algorithm 1 Pseudo-code for Scaled Centroid
Input: The current dot pattern D.
Input: A coordinate ci−1: the previous scaled centroid
Output: A coordinate ci for this identifier
Output: A value c representing the change

1: x = 0
2: y = 0
3: count = 0
4: for all D as d do
5: x+=dx

6: y+=dy

7: count++
8: end for
9: cix = x/count

10: ciy = y/count
11: dmax(x), dmin(x), dmax(y), dmin(y) as the coordinates which represent the co-

ordinate with the maximum x value, the minimum x, maximum y and
minimum y respectively.

12: Use the intersections of these lines to find the bounding box key coordinates
(bottom left corner B1 and top right corner B2)

13: s = |B1 −B2| where s is our scaling value
14: cix = ix/s
15: ciy = iy/s
16: c = |ci− ci−1|
17: return ci, c

(a) Original (b) Centroid Moved

(c) Centroid Moved 2

Figure 1: Effect of scale on centroid measurement

2

4.2 Change in standard deviation from the bounding box

Requires: D and ci−1

Preferred Data Structure: Binary search tree such that extreme x and y
dots are swiftly located.

Process:
The standard deviation is: √∑n

i=0 |di − C|2

n
(1)

Where C is the centroid, n is the number of dots and di is a dot from the
set. So the centroid will need to be found first. To save processing if this is
coupled with Indentifier 4.1 we should store the value, to this end a library
of information should be built up to save re-performing calculations.

Pseudo-code: see Algorithm 2

Algorithm 2 Pseudo-code for Standard Deviation from Centroid
Input: The current dot pattern D.
Input: A value ci−1: the previous standard deviation
Output: A value ci for this identifier
Output: A value c representing the change

1: x = 0
2: y = 0
3: count = 0
4: for all D as d do
5: x+=dx

6: y+=dy

7: count++
8: end for
9: cex = x/count where ce is the centroid

10: cey = y/count
11: ci = 0
12: for all D as d do
13: ci = (|d− C|)2
14: end for
15: ci = ci/count
16: ci =

√
ci

17: c = ci− ci−1

18: return ci, c

Complexity: O(2n)

Normalisation: To normalise this we need a maximum possible deviation ...
hmmm

3

4.3 Change in distances between the medians on the axes

Requires: D and ci−1

Preferred Data Structure: We need an structure that allows us to have both
the x and y coordinates ordered. A 2-dimensional tree structure should
allow this.

Process:
The median on either access can be easily located as long as the dots are
ordered. Once the median is found we take the total difference between
the dots coordinate values on both axes and take this as our value.

Pseudo-code: see Algorithm 3

Algorithm 3 Pseudo-code for Distances between the medians
Input: The current dot pattern D.
Input: A value ci−1: the previous median values
Output: A value ci for this identifier
Output: A value c representing the change

1: Lx: an empty list
2: Ly: an empty list
3: count = 0
4: [This looping may not be necessary, we may have the size already and the tree

structure will give us a way of locating the middle value.]

5: for all Dx as x do
6: add x to Lx

7: count++
8: end for
9: for all Dy as y do

10: add y to Ly

11: end for
12: cix
13: ciy
14: if count mod 2 == 0 then
15: i = ceil(count/2)
16: cix = Lx(i1)
17: ciy = Ly(i1)
18: else
19: i1 = ceil(count/2)
20: i2 = i1 + 1
21: cix = (Lx(i1) + Lx(i2))/2
22: ciy = (Ly(i1) + Ly(i2))/2
23: end if
24: c = cix − ci−1x

25: c+=ciy − ci−1y

26: return c, ci

Complexity: O(2n)

4

Normalisation: To normalise this value we need a maximum possible change..
not sure

4.4 Proportion of points outside the boundary of the pre-
vious footprint

Requires: D and F

Preferred Data Structure: Irrelevant as long as it can be easily looped through

Process:
Using the ray tracing method we count the number of dots external to the
footprint and then return this as a proportion of the total number of dots.
Currently we will count dots on the boundary to be within the point set.

Pseudo-code: see Algorithm 4

Algorithm 4 Pseudo-code for Proportion of points outside the boundary of the
previous footprint
Input: The current dot pattern D.
Input: The current footprint F .
Output: A value ci for this identifier

1: externalCount = 0
2: count = 0
3: for all D as d do
4: intersectionCount = 0
5: for all F as f do
6: s start vertex of edge f
7: e end vertex of edge f
8: line equation = y = dy

9: Find i intersection of edge and line.
10: if iεf && ix ≥ dx then
11: intersectionCount++
12: end if
13: end for
14: if intersectionCount mod 2 == 0 then
15: externalCount++
16: end if
17: count++
18: end for
19: ci = (externalCount/count)
20: return ci

Complexity: O(nm) where m is the number of edges.

Normalisation: Already Normalised

5

4.5 Change in number of dots

Requires: D and ci−1

Preferred Data Structure: Irrelevant as long as it can be counted

Process:
Simple one, just count the number of dots and see if there’s a change.

Pseudo-code: see Algorithm 5

Algorithm 5 Pseudo-code for Number of dots
Input: The current dot pattern D.
Input: A value ci−1: the previous count
Output: A value ci for this identifier
Output: A value c representing the change

1: ci = 0
2: for all D as d do
3: ci++
4: end for
5: c = ci− ci−1

6: return c, ci

Complexity: O(n)

Normalisation: To normalise this value we need a maximum possible change..
not sure yet

4.6 Difference in area of bounding box

Requires: D and ci−1

Preferred Data Structure: Binary search tree such that extreme x and y
dots are swiftly located.

Process:
Once the bounding box is found then we can just compare their areas
which is h ∗ w.

Pseudo-code: see Algorithm 6

Complexity: O(log n) assuming a log search for extreme values

Normalisation: To normalise this value we need a maximum possible change..
not sure yet

6

Algorithm 6 Pseudo-code for Bounding Box Area
Input: The current dot pattern D.
Input: A value ci−1: the previous count
Output: A value ci for this identifier
Output: A value c representing the change

1: dmax(x), dmin(x), dmax(y), dmin(y) as the coordinates which represent the co-
ordinate with the maximum x value, the minimum x, maximum y and
minimum y respectively.

2: Use the intersections of these lines to find the bounding box key coordinates
(bottom left corner B1 and top right corner B2)

3: ci = (B2x −B1x) ∗ (B2y −B1y)
4: c = ci− ci−1

5: return c, ci

7

