Change Identifiers

Max Dupenois

1 Introduction

This is a listing of the various possible change identifiers and the processes used
to caclulate them.

2 Form

All change identifiers should be of the form:

Input: The current dot pattern D.

Input: The previous value of this identifer ¢i_1.
Input: The current footprint F.

Output: A value z indicating the change amount.

3 Normalisation

For the values to be useful they will need to be normalised to stop any inherent
prioritisation. AS such we should be able to get all values between 0 and 1,
hopefully.

4 Change Identifiers

4.1 Change in centroid scaled by the bounding box
Requires: D and ci_,

Preferred Data Structure: Binary search tree such that extreme x and y
dots are swiftly located.

Process:
The centroid is found by C = M, where n is the number of
dots and dy---d,_1 is a dot from the set. However we need to scale by
the bounding box so that we can know whether or not the change is small.
Fig. 1 demonstrates this scaling effect.

Pseudo-code: see Algorithm 1

Complexity: O(n)

Normalisation: To scale this value we need a maximum possible change.. not
sure yet

Algorithm 1 Pseudo-code for Scaled Centroid

Input: The current dot pattern D.

Input: A coordinate ci_i: the previous scaled centroid
Output: A coordinate ci for this identifier

Output: A value c representing the change

=
= o

12:

13:
14:
15:
16:
17:

z=0

y=20

count =0

for all D as d do
r+=d,
y+=dy
count++

end for

ciy = x/count
ciy = y/count

¢ dmaz(a) Dmin(z)> Amaz(y)> Amin(y) as the coordinates which represent the co-

ordinate with the maximum x value, the minimum z, maximum g and
minimum y respectively.

Use the intersections of these lines to find the bounding box key coordinates
(bottom left corner B; and top right corner Bs)

s = |By — Ba| where s is our scaling value

Cly = ig/$

Cly =iy/s

c=lci—ci_q]

return ci, c

PRI SO t it .
L] * l.l * .' ...
.

. ' ¢ LI ¢ o * .I L] C. ¢
L4 L] - - Ll
.- * . * . * *

. . -. . . . y .' . .

(c) Centroid Moved 2

Figure 1: Effect of scale on centroid measurement

4.2 Change in standard deviation from the bounding box

Requires: D and ci_4

Preferred Data Structure: Binary search tree such that extreme x and y
dots are swiftly located.

Process:
The standard deviation is:

Z?:o ‘di - C|2

n

(1)

Where C is the centroid, n is the number of dots and d; is a dot from the
set. So the centroid will need to be found first. To save processing if this is
coupled with Indentifier 4.1 we should store the value, to this end a library
of information should be built up to save re-performing calculations.

Pseudo-code: see Algorithm 2

Algorithm 2 Pseudo-code for Standard Deviation from Centroid
Input: The current dot pattern D.

Input: A value ci_q: the previous standard deviation

Output: A value ci for this identifier

Output: A value c representing the change

z=0
y=20
count =0
for all D as d do
T+=d,
y+=dy
count—++
end for
ce, = x/count where ce is the centroid

10: ce, = y/count

11: ¢t =0

12: for all D as d do
13: ci= (ld—C|)?
14: end for

15: ¢i = ci/count

16: ¢i =i

17: c=ct — Cl_q

18: return ci, c

Complexity: O(2n)

Normalisation: To normalise this we need a maximum possible deviation ...
hmmm

4.3 Change in distances between the medians on the axes
Requires: D and ci_4

Preferred Data Structure: We need an structure that allows us to have both
the x and y coordinates ordered. A 2-dimensional tree structure should
allow this.

Process:
The median on either access can be easily located as long as the dots are
ordered. Once the median is found we take the total difference between
the dots coordinate values on both axes and take this as our value.

Pseudo-code: see Algorithm 3

Algorithm 3 Pseudo-code for Distances between the medians

Input: The current dot pattern D.

Input: A value ci_q: the previous median values
Output: A value ci for this identifier

Output: A value c representing the change

L,: an empty list

Ly: an empty list

count =0

[This looping may not be necessary, we may have the size already and the tree

structure will give us a way of locating the middle value.]
for all D, as = do

add x to L,

count—++
end for
for all D, as y do
10: add y to Ly
11: end for
12: cig
13: ciy
14: if count mod 2 == 0 then
15: i = ceil(count/2)
16: Ciy = Ly (i1)
17: cly = Ly(i1)
18: else
19: i1 = ceil(count/2)
20: 0 =11 +1
21: ciy = (Lz(i1) + Ly (i2))/2
2 ciy = (Ly(ir) + Ly(i))/2
23: end if
24: ¢ = Cly — Cl_1g
25: CH=Cly — Ci_1y
26: return c, ci

Complexity: O(2n)

Normalisation: To normalise this value we need a maximum possible change..
not sure

4.4 Proportion of points outside the boundary of the pre-
vious footprint

Requires: D and F
Preferred Data Structure: Irrelevant as long as it can be easily looped through

Process:
Using the ray tracing method we count the number of dots external to the
footprint and then return this as a proportion of the total number of dots.
Currently we will count dots on the boundary to be within the point set.

Pseudo-code: see Algorithm /

Algorithm 4 Pseudo-code for Proportion of points outside the boundary of the
previous footprint

Input: The current dot pattern D.

Input: The current footprint F'.

Output: A value ci for this identifier

1: externalCount = 0

2: count =0

3: for all D as d do

4: intersectionCount = 0

5: for all F' as f do

6: s start vertex of edge f

7 e end vertex of edge f

8: line equation = y = d,,

9: Find ¢ intersection of edge and line.
10: if ief && i, > d, then

11: intersectionCount++

12: end if

13: end for

14: if intersectionCount mod 2 == 0 then
15: externalCount++

16: end if

17: count—++

18: end for

19: ci = (externalCount/count)
20: return ci

Complexity: O(nm) where m is the number of edges.

Normalisation: Already Normalised

4.5 Change in number of dots

Requires: D and ci_4
Preferred Data Structure: Irrelevant as long as it can be counted

Process:
Simple one, just count the number of dots and see if there’s a change.

Pseudo-code: see Algorithm 5

Algorithm 5 Pseudo-code for Number of dots
Input: The current dot pattern D.

Input: A value ci_q: the previous count
Output: A value ci for this identifier
Output: A value c representing the change

1: et =0

2: for all D as d do
3: ci++

4: end for

5. ¢c=cl —Ci_1

6: return c, ci

Complexity: O(n)
Normalisation: To normalise this value we need a maximum possible change..

not sure yet

4.6 Difference in area of bounding box
Requires: D and ci_;

Preferred Data Structure: Binary search tree such that extreme z and y
dots are swiftly located.

Process:
Once the bounding box is found then we can just compare their areas
which is h * w.

Pseudo-code: see Algorithm 6

Complexity: O(logn) assuming a log search for extreme values

Normalisation: To normalise this value we need a maximum possible change..
not sure yet

Algorithm 6 Pseudo-code for Bounding Box Area

Input: The current dot pattern D.

Input: A value ci_;: the previous count
Output: A value ci for this identifier
Output: A value c representing the change

1:

Amaz(z) Amin(z) Amaz(y)s Imin(y) @ the coordinates which represent the co-
ordinate with the maximum x value, the minimum z, maximum gy and
minimum y respectively.

Use the intersections of these lines to find the bounding box key coordinates
(bottom left corner B; and top right corner Bs)

= (BQT — BlT) * (Bgy — Bly)

c=ci—Ciq

return c, ci

