
The Use of Change Identifiers to Update
Footprints of Dot Patterns in Real Time

Maximillian Dupenois and Antony Galton1

Abstract. Commonly, in the field of spatial knowledge representa-
tion, there is a need to assign to a group of individual entities, con-
sidered as an aggregate, a spatial location known as its ‘footprint’.
The problem of finding an appropriate footprint for an aggregate in a
static context has been fairly thoroughly researched, but little thought
has been given to possible changes of the footprint over time result-
ing from the movement of individuals into, out of, or within the ag-
gregate. For many practical applications, it is required to track the
footprint of a ‘live’ dynamic system such as a crowd or flock. This
paper looks at the problems involved in maintaining footprints over
non-static dot patterns and how to negotiate the trade-offs between
efficiency of computation and accuracy of result. The key notion is
to use ‘change identifiers’ to determine when and how often the foot-
print of a moving aggregate should be updated. Preliminary results
from an implemented system are presented.

1 Introduction

In spatial information theory one often encounters the problem of
representing groups or aggregates, which at a fine level of granular-
ity appear as pluralities with a scattered distribution but at a coarser
granularity may be treated as single coherent individuals with their
own behaviour and properties. Familiar examples from the everyday
world include forests (i.e., aggregates of trees), flocks and crowds
(aggregates of animals or people), and conurbations (aggregates of
buildings).

In recent research, attention has been paid to the problem of as-
signing a spatial location to an aggregate considered as a unit, given
as inputs the spatial locations of the individual components [5, 9].
In abstract form, the two-dimensional problem is, given a set of dots
(i.e., objects sufficiently compact to be idealised as points) in the
plane, to determine a footprint representative of the spatial distribu-
tion of the collection of dots taken as a whole. The footprint will be
a two-dimensional region, which, depending on one’s purposes, may
be required to satisfy various contraints such as polygonality, con-
nectedness, topological regularity, convexity, etc [6]. The problem
generalises to three dimensions in the obvious way, but for simplicity
the discussion in this paper will be restricted to the two-dimensional
version.

It cannot be too strongly emphasised that there does not exist a
uniquely “best” or “correct” footprint for a given dot pattern. In [8]
it was shown experimentally that footprints selected as “good” by
human subjects represent optimal trade-offs between the conflicting
goals of minimising the area and minimising the perimeter, but this

1 University of Exeter, England, email: m.p.dupenois@ex.ac.uk,
a.p.galton@ex.ac.uk

certainly does not tell the whole story. For human purposes, an im-
portant feature of a good footprint is that it “looks” right, that is, it
represents a shape that we “see” in the dot pattern itself. But for some
purposes, one might prefer to use a footprint that is very easily com-
puted (e.g., the minimal axis-aligned bounding rectangle) or which
has well-known mathematical properties (e.g., the convex hull), even
though in many cases these do not provide a close visual match to
the dot pattern.

Many different algorithms for generating footprints from dot sets
have been proposed, in contexts such as geographical information
theory [1, 9], pattern recognition [13, 5], computer vision [11], and
computational geometry [7], to cite only a few representative ex-
amples. In all these cases, however, the assumption is that the dot
patterns are static. In reality, many examples of collectives or ag-
gregates are dynamic, with either the location or the membership,
or both, varying over time [16]. Of our examples above, flocks and
crowds vary in both these respects over a short time scale; forests
and conurbations also vary, but the time-scale is typically several or-
ders of magnitude greater. There has been some work into tracking
aggregates but the majority of this has been centered around object
tracking within video (where the pixels are the dots) such as in [4]
and [2], however there is a difference between tracking a fixed shape
amongst background noise and maintaining a footprint of a possibly
changing shape. There is also the work performed by [12] concerning
tracking herds, this is less interested in the footprint of the aggregate
and focuses on the herd as an abstract looking at on four major pos-
sible evolvements: expand, join, shrink and leave.

The problem we address in this paper is how to track the foot-
print of dynamically changing aggregates of dots. In the case of fast-
moving aggregates, an added constraint is that the tracking should
take place in real time. Footprint algorithms typically run in time
O(n logn) or worse (sometimes much worse), where n is the num-
ber of dots. Hence recomputing the footprint ab initio every time
there is a change in the dot pattern will be computationally costly,
making real-time recomputation infeasible in many cases. Impor-
tantly we have limited the data we expect to simply the coordinate
positions of the dots, this is to keep the system as general as possi-
ble, although information such as identity may allow for extensions
to the change identifiers.

One possible approach would be to look for a way to update the
footprint incrementally rather than recompute it entirely. In an ideal
world, one could do this in such a way that the footprint assigned to
the dots at any time is always identical to the footprint that would be
obtained if it were recomputed. In general, for most types of foot-
print it is unlikely that such exact tracking can be accomplished with
significantly less cost than recomputing the footprint every time.

Instead, we propose a method by which the position of the dots



in relation to the most-recently computed footprint is continuously
monitored, and the footprint is only recomputed when the mismatch
between the dot positions and the current footprint exceeds some
preassigned threshold of accuracy. Clearly there will be a trade-off
between the level at which the accuracy threshold is set and the re-
sultant frequency of recomputation, and we investigate the nature of
this trade-off with a view to optimising it.

Our approach is to use a suite of easily computable change iden-
tifiers, each with its own threshold. Recomputation of the footprint
is triggered when some aggregate value computed from the values
returned by the change identifiers exceeds a given threshold. In the
simplest form this aggregate value could be a count of how many of
the change identifiers individually exceed their thresholds, amount-
ing in effect to a vote amongst the change identifiers. Alternatively,
the change identifiers could be ranked in order of importance and a
weighted combination of their values compared with some threshold.
We investigate the effect of using different sets of change identifiers,
and different ways of combining the results returned by them.

The plan for the remainder of this paper is as follows. In §2 we
fix some terminology and formalise the approach described above in
the form of an algorithm presented in pseudocode. In §3 we discuss
a range of possible change identifiers, evaluating them in terms of
their ease of computation and informativeness in relation to the task
in hand. In §4 we consider combinations of change identifiers, and
discuss the computation of aggregate values and thresholds. In §5, we
provide a theoretical analysis of the kinds of results to be expected
from running the algorithm, and in §6 we describe the current state of
our implementation and some preliminary results. Finally, in §7 we
summarise the results obtained so far and outline our plans for future
work.

2 Process
The basic process we implement is shown as Algorithm 1, which
works as follows. The incoming data consists of a sequence of dot
patterns (which might come from, e.g., observations relayed by sen-
sor arrays). The dot pattern associated with time step i is denoted
DPi, and is referred to as the current dot pattern when i is the cur-
rent time. An algorithm for generating footprints from dot patterns is
assumed given (we shall refer to this as the footprint algorithm), and
at the beginning of the sequence a footprint f(DP0) is generated for
dot pattern DP0 and saved as the stored footprint SFP0. The dot
pattern DP0 from which it is generated is stored as the stored dot
pattern (SDP0). At subsequent time steps, the change identifiers
are used to determine whether a new footprint should be computed;
this is done by evaluating the extent to which the current dot pattern
DPi differs from the previously stored dot pattern SDPi−1. If this
value, eval(DPi, SDPi−1, SFPi−1), exceeds some pre-set thresh-
old, then a new footprint f(DPi) is generated as the new stored foot-
print SFPi, and the current dot pattern is used as the new stored
dot pattern DPi. Otherwise, the stored dot pattern and footprint are
retained from the previous time step. For any dot pattern DPi, the
footprint f(DPi) that would be computed from it (whether or not
this computation actually takes place) will be referred to (admittedly
somewhat tendentiously, bearing in mind the non-uniqueness of the
footprint) as the true footprint for that dot pattern.

3 Change Identifiers
Each change identifier returns a value representing some measure of
change. To produce this value it has access to the stored dot pattern,

Algorithm 1 Main Process
1: i = 0
2: Input first dot pattern DP0

3: SFP0 = f(DP0)
4: SDP0 = DP0

5: repeat
6: i = i+ 1
7: Input DPi

8: if eval(DPi, SDPi−1, SFPi−1) > threshold then
9: SDPi = DPi

10: SFPi = f(DPi)
11: else
12: SDPi = SDPi−1

13: SFPi = SFPi−1

14: end if
15: until No more input available

the current dot pattern and the stored footprint. Most of the identi-
fiers listed below do not use the stored footprint; this enables them
to be used in conjunction with a wide range of footprint algorithms,
since they make no assumptions concerning the nature of the foot-
print (e.g., whether it must be polygonal, can have holes or multi-
ple components, etc.). To assess whether the value it returns should
force a footprint update, a threshold is associated with each change
identifier; and if change identifiers are to be combined, a method to
normalise their values is required. These ideas are discussed in the
section on change identifier sets (§4). We describe the case where a
change identifier exceeds its threshold as a ‘failure’ since in this case
the stored footprint is deemed to have failed to represent the current
dot pattern accurately.

The identifiers listed below are not exhaustive and we are not pre-
senting them as a definitive final set, the do however cover a range
of possible transformation types the dot pattern could undergo, e.g.,
changes in position, changes in distribution, and changes in mem-
bership of the dot pattern. For ease of reference we assign to each
change identifier a label in SMALL CAPITALS.

3.1 Change in centroid scaled by the bounding
box: CENTROID

This change value is given by the distance between the centroids of
the current dot pattern and the stored dot pattern. It is normalised by
dividing it by the diagonal of the bounding box of the stored dot pat-
tern. If the dot pattern has n dots, the total computation time is O(n)
(If the dots are held in a suitable tree data structure, the bounding
boxes can be found in time O(logn), but this does not reduce the
overall order-of-magnitude complexity.)

3.2 Change in variance from the centroid:
VARIANCE

The difference between the variances of the current and stored dot
patterns.2 We use variance rather than standard deviation so as to
avoid the processing time involved in computing the square root. This
measure can also be computed in time O(n).

3.3 Change in axis-aligned medians: MEDIAN

This is given by the distance between the ‘medians’ of the current
and stored dot patterns, where the (axis-aligned) median of a dot pat-
2 The variance is the mean squared distance of the dots from the centroid.



tern is defined as the point whose coordinates are the medians of
the x-coordinates of the dots and the y-coordinates of the dots re-
spectively. This is analogous to the centroid but computed using the
median rather than the mean. However, unlike the centroid, it is not
rotation-invariant.

3.4 Percentage change in number of dots: DOTS

This is the difference in number of dots between the current dot pat-
tern and the stored dot pattern as a percentage of the number of dots
in the stored dot pattern. This can be computed in O(n + i) time,
where i is the number of dots from the previous pattern.

3.5 Change in bounding box: BOUNDINGBOX

This is given by the area of the symmetric difference between the
bounding boxes of the current and stored dot patterns; it can be com-
puted as the sum of the areas of the bounding boxes, less twice the
area of their intersection. For purposes of normalisation, it is ex-
pressed as a fraction of the area of the bounding box of the stored
dot pattern. If the dots are held in a two-dimensional tree data struc-
ture, this can be computed in time O(logn).

3.6 Proportion of points outside the boundary of
the stored footprint: OUTSIDE

The fraction of dots outside the current footprint. By using the ray-
casting method [15] we can find this in O(nm) time, where m is the
number of edges of the footprint. This is only sensibly applied if the
footprint algorithm does not allow outliers, i.e. dots present in the dot
pattern but not in the completed footprint. It should be noted that this
is the only change identifier on our list which makes use of the stored
footprint.

4 Change Identifier Sets
The change identifiers are used to compute the term
eval(DPi, SDPi−1, SFPi−1) used in Algorithm 1. While it
is certainly possible to use any one of the change identifiers
on its own for this purpose, it seems likely, given the relatively
undiscriminating nature of each of them considered individually,
that better results will be achieved when a group of two or more
identifiers is used, with their values combined in some way to
give eval(DPi, SDPi−1, SFPi−1). In our implementation to be
described below, we use an xml file to collect together change
identifiers to this end. There are a two of important decisions to
make in combining the change identifiers: Are they run in an order?
and how are the results of the identifiers tallied? We wanted the
system to allow for different value choices such that we could run
multiple setups and compare how effective they are, so the xml
has element types for various parameters. The identifiers all have a
priority associated with them, they are then run in ascending order.
The set can be set to run concurrently but it was found that for small
dot sets the time taken to start the threads would be slower than the
time taken to run the footprint algorithm. The xml has elements for
giving different thresholds to each individual identifier, a change
identifier is considered to have failed if the amount of change it
returns exceeds the value of the threshold parameter. There is a total
threshold parameter that is attached to the set, the identifiers’ values
are summed and if the result is greater than the total threshold value
the set is considered to have failed and the footprint is redrawn.

However, the identifiers have different scales of measurement, so
that, for example, to add BOUNDINGBOX directly to VARIANCE

would be to combine two very different units together and therefore
may give undue importance to one identifier over another. A
multiplier parameter is applied to the change value of the identifier
before it is added to the total value to prevent this inequality from
occurring. If the bias can not be handled by the multiplier the set
can also have an integer parameter that is a threshold of how many
individual identifiers are allowed to fail.

5 Analysis
The purpose of using change identifiers is to enable the evolution of
a footprint to be tracked more efficiently than by recomputing the
footprint at each time step. The footprint is only recomputed when
the change identifiers indicate that the dot pattern has changed suffi-
ciently to make the mismatch with the current stored footprint unac-
ceptably great. The number of footprint recomputations, and hence
the total time taken to process a given sequence of dot patterns, will
depend on the change identifiers used, and the threshold settings. We
define variables as follows:

• tFP (i) is the time taken to compute the footprint from the dot
pattern at step i.

• tCI(i) is the time taken to evaluate the change identifiers at step i.
• r(i) is a Boolean variable, set to 1 if the footprint is in fact recom-

puted at step i, and zero otherwise.

The total computation time over a run of n dot patterns is thus

TCI = tFP (0) +

n∑
i=1

(tCI(i) + r(i)tFP (i)).

The value of TCI is minimum when the change identifier threshold
is set so high that the footprint is never recomputed after the start of
the sequence (so r(i) = 0 for 1 ≤ i ≤ n):

Tmin = tFP (0) +

n∑
i=1

tCI(i).

It is maximum when the change identifier threshold is set so low that
the footprint is recomputed at every time step (so r(i) = 1 for all i):

Tmax = tFP (0) +

n∑
i=1

(tCI(i) + tFP (i)).

If change identifiers are not used at all, and the footprint recom-
puted at every time step, then the total time taken is

TNCI =

n∑
i=0

tFP (i) = tFP (0) + Tmax − Tmin.

If it is assumed that always tCI(i) < tFP (i) (for if not, there would
be little point in using change identifiers) then Tmin < TNCI <
Tmax, so the relative size of TCI and TNCI — which provides a
measure of the time advantage, if any, gained by using change iden-
tifiers — depends on the threshold settings.

This time advantage must be set against the accuracy with which
the footprint is tracked. The cost of using change identifiers comes
from the fact that, most of the time, the stored footprint differs from
the true footprint. To measure this cost, we need a way of quantifying
the extent of this mismatch. The difference between two footprints



can be measured in various ways, e.g., using Hausdorff distance, or
symmetric area difference (see [10, Ch. 7] for a discussion). Here
we will use only the symmetric area difference, but the principles
described below would apply equally to other measures.

The symmetric difference between two regions comprises the parts
of each region that do not overlap the other; it is given by

R1∆R2 = (R1 \R2) ∪ (R2 \R1) = (R1 ∪R2) \ (R1 ∩R2).

We use the area of this as a measure of the dissimilarity between two
footprints; and since we are only interested in comparisons, not ab-
solute values, we normalise this area by expressing it as a fraction of
the area of the ‘true‘ footprint (FPi)3. Thus the aggregate mismatch
between the stored footprint and the true footprint over a dot-pattern
sequence of length n is given by

mismatch =

n∑
i=0

||FPi∆SFPi||
||FPi||

,

where ||X|| denotes the area of region X .
If the footprint is recomputed every time, corresponding to to-

tal computation time Tmax, we have SFPi = FPi for every i,
so mismatch = 0. At the other extreme, the maximum value of
mismatch is obtained when the footprint is never recomputed, cor-
responding to Tmin. There is thus a trade-off between accuracy and
computation time, as indicated in Figure 1, where different choices
of change identifier thresholds correspond to different positions on
the curve. The optimal setting for the change identifier threshold de-
pends on the relative importance attached to the conflicting goals of
minimizing both computation time and accumulated footprint error;
but in any case no time advantage can be obtained for mismatches
below the value m at which TCI = TNCI .

T
C

I

TNCI

mismatchAccumulated footprint error (               )

maxT

min

0

TT
ot

al
 c

om
pu

ta
tio

n 
tim

e 
( 

   
   

)

m

Figure 1. Total computation time against aggregate footprint error

6 Implementation
6.1 System
We have implemented a system to test the ideas presented in this pa-
per. The system is split into modular parts: the engine, the change

3 We use FPi instead of f(DPi) for clarity within the formula

identifiers, the application and the footprint algorithms. The applica-
tion initialises an instance of the engine to which it passes the foot-
print algorithm to use and the identifier set to process, then it starts
the instance. The engine sits in a waiting state checking an internal
queue to see if it has dot patterns to process. The application passes
dot patterns to the engine; as in a live system it does not wait for
a response but sends them continuously. The engine processes the
dot patterns and notifies the application each time it generates a new
stored footprint. Once the application has sent all the patterns to the
engine it sends a command to stop.

If we are running this instance as a test then the engine also pro-
cesses the dot patterns without using the change identifiers, recom-
puting the footprint every time, and records the following data:

• Time taken to run the engine over the entire set of dot patterns.
• Time taken to run the footprint algorithm.
• The state of the change identifier set at each timestep:

– How long each change identifier took to evaluate.

– Which change identifiers failed.

– The value each change identifier returned.

– What the total change was.

– If the change identifier set enforced recomputation of the foot-
print, then which change identifier(s) caused the set to fail.

• Time taken to run the set.
• The current dot pattern at each time step.
• The stored footprint at each time step.
• The ‘true’ footprint at each time step.

By running this control we can see how much time is saved using
the change identifier sets and draw similarity comparisons, giving us
quantitative data to see how far the stored footprint deviates from the
‘true’ footprint at any time step. We use the methods described in §5
to produce two graphs: the first plots the symmetric area difference
against time step, and the second plots the computation time for each
time step. Results from some preliminary tests using this method are
described below.

The other component of note in the system is a properties holder
linked to the dot patterns. The change identifiers typically compare
values computed from the current and stored dot patterns. But of
course, any stored dot pattern was once current, so its value for each
identifier will have been computed already. It is inefficient to com-
pute it again so the pattern stores it in a mapping table once it is first
computed.

6.2 Current Results
We have run tests on streams of 500 dot patterns containing up to
1000 dots each. We have implemented a collective motion pattern
generator which can use different methods to produce streams of dot
patterns. The method that generated the patterns for the current tests
makes use of the principles of separation, cohesion and aggregation
used to define behaviours in the Boids system of [14]. The footprint
algorithm used is the upper and lower convex hull algorithm as given
in [3]. A separate program has been written to showcase the two
footprints for each timestep (one with change identifiers the other
without) and time details from the test (See Figure 2).4

Currently the only two change identifiers for which full tests have
been run are BOUNDINGBOX (§3.5) and DOTS (§3.4). Both of these
4 The screenshot is from a smaller test than the one mentioned above so that

the footprints are clearly visible on the small image



Figure 2. Screenshot of Result Display App.

consistently show better run times for when using change identifiers
than when not, for a range of threshold settings.

The results display application produces the two graphs described
in §6.1. The computation time graph (Figure 3) has two lines: The
squares are on the line representing the run with change identifiers,
and the circles are on the line representing the run without. The ver-
tical double bars represent where the graph has been cut and stitched
— with 500 steps the graph is too long to display in its entirety.
As would be expected, the computation times when change identi-
fiers are used is consistently less than when they are not; in fact it
generally takes less than 1ms to run and therefore is less than 1ms
over the footprint algorithm time when it updates. The time steps at
which it updates can clearly be seen on the graph at U0–Ui. Figure
3 shows the case where the change identifier is BOUNDINGBOX and
the threshold is set at 20% (Figure 3(a)) and 10% (Figure 3(b)). The
10% threshold updates more often and we have a total time (TCI in
Figure 1) of 90ms for the run compared to 61ms for the 20%, but
both are far below the times for the comparison runs which update
at each timestep, with total times (TNCI) of 1331ms for the 20% run
and 1342ms on the 10%.5

The symmetric area difference graph (Figure 4) also clearly shows
the update times (U0–Ui). More interesting is what it can tell us about
the change of the dot pattern. The frequency with which these up-
dates occur shows us how static the dot pattern is and, if we know
the change identifier(s) used, how it changed. The area difference
graph for threshold 20%(Figure 4(a)) levels out towards the end, al-
though the cropping obscures this. This levelling out indicates that
the bounding box of the dot pattern did not change by over 20%
for these time steps. The area difference during this static period is
around 16%; if this is within allowed footprint error then we are sav-
ing large amounts of time across the period by not updating. If, how-
ever, 16% is considered too great a footprint difference then we need
to change the threshold values on the identifier set to update earlier.
Figure 4(b) shows a run with the BOUNDINGBOX threshold set at
10%, and as mentioned above, this causes many more updates. Sig-

5 Note that, in an ideal world, these values for TNCI would be equal, since if
no change identifiers are used the difference in threshold is irrelevant; the
small difference actually found merely reflects the fact that in a real-world
computing environment there will always be some variation in computation
times even for identical computations.

nificantly, Figure 4(b) does not level out as Figure 4(a) does, showing
that lowering the threshold picked up changes ignored by the larger
value. The accumulated errors (as described in §5) for Figure 4(b)
and Figure 4(b) are 4545.5 and 2826 respectively; these may seem
large but are accumulated over 500 time steps and give us an aver-
age error of 9.091 and 5.652 per time step. Whether or not these are
acceptable will depend on specific application requirements.

(a) BOUNDINGBOX, Threshold = 20%

(b) BOUNDINGBOX, Threshold = 10%

Figure 3. Graph of Time Taken against Time Steps

(a) Bounding Box Threshold at 20%

(b) Bounding Box Threshold at 10%

Figure 4. Graph of Footprint Area Difference against Time Steps

7 Conclusions and Further Work
The principles behind the change identifiers appear to be sound. The
graphs show a consistent saving of 5ms per time step using only the
BOUNDINGBOX change identifier. There have not yet been enough
tests performed to allow a systematic comparison of the usefulness



of different change identifiers, but the change in bounding box has
shown itself to be able to identify dot pattern changes and update
accordingly.

The continuation of this work includes implementing the rest
of the change identifiers and running basic tests on them, as with
BOUNDINGBOX, to see if they affect the update times with any regu-
larity. Once done, an application using the principles of optimisation
will be created to sort through the variations of change identifier sets
over a particular dot pattern stream with a particular footprint algo-
rithm. The results of this will be plotted on a graph of accumulated
footprint error against time taken, as described in §6.1. This appli-
cation will need to be run over several footprint algorithms and dot
pattern streams.

With regard to the different types of footprint algorithm; the χ-hull
algorithm from [5], the α-shape from [7] and the swinging-arm al-
gorithm from [9] will be implemented. The majority of non-convex
footprint algorithms require some external parameter (α in the α-
shape, line length in the χ-hull and arm length in the swinging-arm),
but fortunately the selection of this parameter does not greatly con-
cern us. Our immediate concern is with how well we can track the
footprint, not how appropriate the footprint is for the dot pattern.

In [16], several types of collective movement are described, and
having sets of dot pattern streams that replicate these movements
would lend weight to the accuracy rating of the change identifiers.
It could show that the identifier in question was accurate over all
types, accurate only for some, or for none. As well as this archetypal
data, we want to apply the system to real-world examples.

Another, purely qualitative, method of judging the performance
of the system is to appeal to human intuition. We can record the
streams as ‘movies’ of the footprint evolving with the dot pattern.
These movies can be played to a group of experimental subjects who
are asked to rate how well they felt the footprint kept up with the
dot pattern. Importantly the test should be set up in such a way that
the notion of a good footprint is disentangled from how well it can be
tracked. Results from this experiment would indicate just how impor-
tant people think accuracy is.Data from the experiment may enable
us to state which change identifier sets give acceptable accuracy for
high efficiency and may help us say something about what properties
of the dot pattern are most important when generating a footprint.

Also of interest will be the comparison between the quantitative
and the qualitative data. Comparing the accuracy assessments from
the human-subject study with the results from the quantitative testing
may tell us which change identifiers are most important to human
intuition.

Other accuracy measures, e.g., Hausdorff distance, will also be
implemented, and it will be interesting to see how they relate to each
other. A side interest will be to see how they relate to the accuracy
ratings from the human study, as it may be that one of the measures
is, implicitly, more used by the human mind than others.

REFERENCES
[1] A. Arampatzis, M. van Kreveld, I. Reinbacher, C. B. Jones, S. Vaid,

P. Clough, H. Joho, and M. Sanderson, ‘Web-based delineation of
imprecise regions’, Computers, Environment and Urban Systems, 30,
436–459, (2006).

[2] Shai Avidan, ‘Ensemble tracking’, in In CVPR, pp. 494–501, (2005).
[3] Mark Berg, Otfried Cheong, Marc Kreveld, and Mark Overmars, Com-

putational Geometry: Algorithms and Applications, Springer, 3rd edn.,
April 2008.

[4] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer, ‘Kernel-based
object tracking’, IEEE Transactions On Pattern Analysis and Machine
Intelligence, 25(5), 564–577, (2003).

[5] M. Duckham, L. Kulik, M. Worboys, and A. Galton, ‘Efficient genera-
tion of simple polygons for characterizing the shape of a set of points
in the plane’, Pattern Recognition, 41(10), 3224–3236, (2008).

[6] Max Dupenois and Antony Galton, ‘Assigning footprints to dot sets:
An analytical survey’, in Spatial Information Theory: Proceedings of
the 9th International Conference COSIT 2009, eds., K. S. Hornsby,
C. Claramunt, M. Denis, and G. Ligozat, pp. 227–244, Berlin, (2009).
Springer.

[7] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, ‘On the shape of a
set of points in the plane’, IEEE Transactions on Information Theory,
IT-29(4), 551–559, (1983).

[8] A. P. Galton, ‘Pareto-optimality of cognitively preferred polygonal
hulls for dot patterns’, in Spatial Cognition VI: Learning, Reason-
ing and Talking about Space, eds., C. Freksa, N. S. Newcombe,
P. Gärdenfors, and S. Wölfl, pp. 409–425. Springer, (2008).

[9] A. P. Galton and M. Duckham, ‘What is the region occupied by a set of
points?’, in Geographic Information Science: Proceedings of the 4th In-
ternational Conference, GIScience 2006, eds., M. Raubal, H. J. Miller,
A. U. Frank, and M. F. Goodchild, pp. 81–98. Springer, (2006).

[10] Antony Galton, Qualitative Spatial Change, Oxford University Press,
2000.

[11] Gautam Garai and B. B. Chaudhuri, ‘A split and merge procedure for
polygonal border detection of dot pattern’, Image and Vision Comput-
ing, 17, 75–82, (1999).

[12] Yan Huang, Cai Chen, and Pinliang Dong, ‘Modeling herds and their
evolvements from trajectory data’, in GIScience ’08: Proceedings of
the 5th international conference on Geographic Information Science,
pp. 90–105, Berlin, Heidelberg, (2008). Springer-Verlag.

[13] M. Melkemi and M. Djebali, ‘Computing the shape of a planar points
set’, Pattern Recognition, 33, 1423–1436, (2000).

[14] Craig W. Reynolds, ‘Flocks, herds and schools: A distributed behav-
ioral model’, in SIGGRAPH ’87: Proceedings of the 14th annual con-
ference on Computer graphics and interactive techniques, pp. 25–34,
New York, NY, USA, (1987). ACM.

[15] Paul S. Heckbert and Eric Haines, Berg, Mark and Cheong, Otfried,
chapter A Ray Tracing Bibliography, Morgan Kaufmann, 2002.

[16] Zena M. Wood and Antony P. Galton, ‘A taxonomy of collective phe-
nomena’, Applied Ontology, 4, 267–292, (2009).


