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0.1 Footprints

There is a fairly large body of work about the generation of footprints, publi-
cations from as early as 1973 ([10]) presenting a variety of different algorithms
to create representational shapes from dot patterns. Amongst this there are
surprisingly few that examine the footprints created in a comparative fashion.
Also conspicuous by its absence is a systematic approach to determining the
quality of the produced footprint, Galton [7] makes significant inroads in to
both determining how ‘good’ a footprint is and why this is difficult to judge.

The rest of this section consists of analysis of some of the existing literature
in chronological order.

Jarvis [10] presents an algorithm, since called the ‘Jarvis March’ to gener-
ate the convex hull of a dot pattern. The convex hull is almost a base level of
footprint algorithm, it is easily computable and has distinct mathematical prop-
erties. Importantly the convex hull is unique for any particular dot pattern. This
paper was amongst the first to give an efficient algorithm for its computation
and is such amongs the first to attempt to provide a representational shape for
a dot pattern.

The convex hull is not without its problems as a representation.

(a) Point set (b) Convex Hull (c) Non-Convex Footprint

Figure 1: When a convex hull is inappropriate

As can be seen in Fig.1(b) the convex hull can potentially lose information
about the pattern, whereas Fig.1(c) may be a better approximation of the under-
lying data. COMMENT: [From here to cosit paper reference is basically plaigarising
myself, need to rewrite]An algorithm capable of reaching a better fit representation
is a non-trivial problem and one of the earliest, and much-referenced, papers on the
subject is by Edelsbrunner et al. [6]. The method produces straight-line graphs called
α-shapes, obtained from a generalisation of the convex hull. For a set S the convex
hull can be considered to be the intersection of all closed half-planes that contain all
the points of S. The α-hull is obtained by using closed discs of radius 1/α instead of
half-planes; the α-shape is derived from this in a straightforward way. The authors
do not discuss any principled way to choose the appropriate α for the type of shape
required.
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Chaudhuri et al. [3] present two methods for generating a footprint, called the
external shape, from a dot pattern. Although they use the term ‘dot pattern’ they
make no distinction between points and dots. For the first method, a grid of squares
of side-length s is drawn on the plane, and the union of all grid-squares containing at
least one of the dots is returned as the footprint, called the s-shape. For the r-shape
they inscribe a disc of radius r round each dot, and draw an edge connecting any pair
of dots whose discs intersect in a point not contained in any of the other discs. These
edges provide an outline which, in our terms, may be regarded as the boundary of the
footprint. As with the α-shape, no principles are given for selecting appropriate values
of r or s.

Garai and Chaudhuri [9] propose a ‘split and merge’ method for generating foot-
prints. This method starts from the convex hull and attempts to refine it to a shape
more closely resembling what they refer to as the underlying shape. The method
consists of three separate algorithms (four if the convex hull algorithm is included):
splitting, isolation, and merging. This is one of the few algorithms that provides a way
of aiming for a particular shape without having to re-run the algorithm with different
parameters, so long as the user is able to identify a desired maximum area or number
of sides just from a cursory examination of the dot pattern. Again the authors say
little about the quality or type of footprint they generate.

Alani et al. [1] developed the Dynamic Spatial Approximation Method (DSAM).
This system takes in both the dot pattern of the region to be found and the dot pattern
of the area known to exist outside the region. It builds a Voronoi diagram based on
these coordinates and takes the union of all the cells which contain an ‘interior’ point
as its footprint. This work pays more attention than many in the area to the quality
of footprint produced; this can be assessed in terms of how closely the region found
fits the expected region. The existence of a contextually determined target shape
differentiates this paper from others in the field.

Arampatzis et al. [2] follow on from Alani et al. [1]. However, they adapt DSAM to
use Delaunay triangulations in conjunction with a system for finding point locations
using web queries. They call this adaptation the recolouring algorithm and use it to
generate boundaries for imprecise regions. Much like the DSAM this system has a
target shape and, as such, this paper has more analysis of the footprint found than
much of the field.

Galton and Duckham [8] propose two methods for finding footprints. The first
method is a generalisation of the Jarvis March (‘gift-wrapping’) algorithm for convex
hulls. The idea behind the Jarvis March is simple. From an origin point outside the
dot set a radial half-line is swung in an arbitrary direction until it meets one of the
dots. This dot is made the new origin point from which a radius is swung in the
same direction as before until it meets another dot. This is repeated until the first dot
is encountered again; the sequence of dots encountered in this way form the vertices
of the convex hull. Dots are removed from consideration if they have already been
marked as being on the convex hull or if they lie within the area enclosed by the dots
encountered so far. The ‘Swinging Arm’ algorithm is similar except that it uses a line-
segment of some predetermined length instead of a half-line. The second method starts
with the Delaunay triangulation and successively removes the longest external edge,
subject to constraints of maintaining connectedness and regularity, until either some
predetermined minimum length is reached, or no more edges can be removed. The
authors note that there can be no uniquely ‘optimal’ footprint when the application
context is considered to be general. The paper proposes nine criteria which may be
used for evaluating footprint algorithms with respect to different application contexts,
although little is said about any actual applications.

Moreira and Santos [11] present a ‘Concave Hull’ algorithm. Like the Swinging
Arm, Concave Hull is also derived from the Jarvis March algorithm, its difference being
that it always selects the next vertex from the k nearest neighbours of the current
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vertex. This is the crux of the algorithm’s effectiveness: by having a non-contextual
integer as the variable that restrains the hull algorithm, they have a default base
value from which they can run the algorithm (i.e. k = 3); if this fails to produce
a footprint that satisfies the criteria (having no intersecting lines and containing all
the points) then the algorithm is run with increasing values of k till such a footprint
is created. Like most of the other authors they pay little attention to the quality of
the footprint in relation to any application type, though they do mention the criteria
given in [8]. Like the split and merge method [9], the Concave Hull algorithm requires
some pre-processing of dots, using the Shared Nearest Neighbour (SNN) algorithm to
determine any separable groupings in the dot pattern prior to running the algorithm.
Like Garai and Chaudhuri they do not take account of this pre-processing algorithm
in determining the computational complexity of their own.

Duckham et al. [4] provide a fuller account of the Delaunay-based method intro-
duced in [8], now called the χ-algorithm. This paper includes a discussion of the
footprint’s properties, and how these are directly tied to the method by which it is
created. More attention is paid to the choice of the length parameter l. There are prac-
tical limits on l for any triangulation (if it is too large then no lines will be removed,
if it is too small too many will be removed) and consequently l can be normalised.
Duckham et al. propose using this normalised parameter (λp) to find a starting value
which should achieve what they call a characteristic shape for many, if not all, dot
patterns. While they conclude that there is no λp that always produces a “good”
characterization, the fact that they spend time considering this is unusual within the
field. Unlike Moreira and Santos [11] and Garai and Chaudhuri [9], Duckham et al.
do not discount the pre-processing (in this case computing the Delaunay triangulation
and sorting the edges) when determining the complexity of the algorithm.

Galton [7], instead of proposing an algorithm, searches for objective criteria for
evaluating the acceptability of any proposed footprint in relation to the ‘perceived’
shape of a dot pattern. The paper notes that in most of the published work, “while
lip-service is generally paid to the fact that there is no objective definition of such
a ‘perceived shape’, little is said about how to verify this, or indeed, about exactly
what it means”. Restricting attention to footprints in the form of polygonal hulls,
simple polygons having vertices selected from the dot pattern, all the other dots being
within the interior, the paper presents evidence that while a dot pattern may have
several equally acceptable perceived shapes, they all represent optimal or near-optimal
compromises between the conflicting goals of simultaneously minimising both the area
and the perimeter of the hull.

Dupenois and Galton [5], suggests a method for classifying the footprints. Unlike
Galton [7] it does not look at their ‘fitness’ but approaches the subject from a desire
to be able to describe algorithms by the types of footprints they can create. The paper
notes that the context in which the algorithm is being used determines the type of
footprint that is satisfactory. With this in mind it proposes a method of using the
application specific knowledge to limit the choice of algorithms for any particular user
requirement. The classification bears some similarity to the set of criteria proposed by
Galton and Duckham [8] for evaluating the footprints produced by different algorithms.

0.2 Dot Patterns

Examining dot patterns has generally been within the field of geospatial information.
However, if we move away from real-world phenomena, we can imagine that any data
that can be represented on a 2-dimensional plane (e.g., classification data, multi-
objective optimisation) can be viewed as a dot-pattern. This leads to a daunting
amount of possible literature to examine so the analysis given is by no mean exhaustive
but should serve to give a general overview.
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O’Sullivan and Unwin [12] gives a good description of the treatement of dot pat-
terns (called point patterns) from a geographic standpoint. The chapter begins with
noting that point patterns frequently occur in GIS and gives the examples of crime or
death hot-spot analysis.

Within GIS events have a set of criteria that must be satisfied for them to be
considered point patterns [Quote: 0.2].

Quote 0.1 Point Pattern Requirements
O’Sullivan and Unwin [12]

1. The pattern should be mapped on the plane.

2. The study area should be determined objectively.

3. The pattern should be an enumeration or census of the entities of interest,
not a sample.

4. There should be one-to-one correspondence between objects in the study
area and events in the pattern.

5. Event locations must be proper. They should not be, for example the
centroids of areal units chosen as representative . . . They really should
represent the point locations of entities that can be sensibly be considered
points at the scale of the study.

While we do not need to be so strict when considering dot patterns, it is important
to keep this in mind when assessing any GIS specific literature on the subject.

It is impossible to discuss the possibilities for change present in a dot pattern
without first describing the pattern’s properties in an analytical manner.

COMMENT: [Things to reference:]

• Geographic Information Analysis book, check for further references

• Density measures

• Probability distributions

• Existing work on things like variance and mean

• Worboys – Geographic Information Systems: A computing perspective. for some
data structures

• see if there is any literature on describing dot patterns within classification or
optimisation

0.3 Change

COMMENT: [List types of dot pattern change, note work on convex hull updating
using data structures]
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